Seasonal variation of herbicide concentrations in prairie farm dugouts.

J Environ Qual

Agriculture and Agri-Food Canada, Research Centre, Lethbridge, AB, Canada T1J 4B1.

Published: May 2004

Prairie farm dugouts are frequently constructed for use as potable water sources. Consequently, cumulative pesticide inputs via atmospheric deposition and surface runoff may constitute a risk to human health. Since, relative to other pesticides, herbicides are used in greatest amount on the Canadian prairies, herbicide concentrations were intensively monitored in three dugouts over three growing seasons. Herbicides were detected in the water of all three dugouts each growing season which may reflect cumulative inputs from atmospheric and surface processes over the lifetimes of the dugouts, which varied from 11 to 22 yr. Detections, which were not continuous, tended to be seasonal in nature. During the 3-yr study, detections were most frequent during the spring application period and late fall following dugout turnover. Between these periods, herbicide concentrations generally decreased to below detection limits. The reappearance of herbicides in the dugout water during fall turnover and in concentrations generally greater than those present during the spring application period suggest that, under appropriate environmental conditions, the bottom sediments may act as a source of herbicides to the water column. In general, herbicide inputs due to deposition of application drift did not result in detectable concentrations of herbicides in the dugouts. In the only year that winter samples were monitored, herbicides were also detected during ice cover. On the basis of monthly sampling over each growing season, median concentrations of 9 of the 10 herbicides monitored were less than 0.05 microg L(-1). The exception, 2,4-D, which has been used extensively on the Canadian prairies for more than 50 yr and in greatest amounts, was the most frequently detected herbicide. In no case did herbicide concentrations exceed Canadian drinking water guidelines; however, on occasion maximum herbicide concentrations did exceed aquatic life and irrigation water guidelines.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2004.3020DOI Listing

Publication Analysis

Top Keywords

herbicide concentrations
20
concentrations
8
prairie farm
8
farm dugouts
8
inputs atmospheric
8
canadian prairies
8
three dugouts
8
herbicides detected
8
growing season
8
spring application
8

Similar Publications

Butachlor is a widely utilized acetamide herbicide noted for its systemic selectivity against pre-emergence grass weeds. Butachlor has negative effects on organisms and the environment, so it is necessary to screen degradation strains. In this investigation, strain DC-1 was isolated from soil persistently exposed to butachlor.

View Article and Find Full Text PDF

The removal of organic pollutants from water is significantly important as they have harmful effects on the ecosystem. Heterogeneous photocatalysis is a potential technique for the removal of organic pollutants from the wastewater. In this article, zinc oxide (ZnO) and samarium oxide (SmO) nanoparticles and ZnO-SmO nanocomposite (ZS) were synthesized by the co-precipitation method.

View Article and Find Full Text PDF

The aim of this study is based on the searching of "new" potential environmentally friendly plant based products with herbicidal activity. The purpose of the study is also to find the source which is easy to harvest in high amount within the local environment. Salvia pratensis L.

View Article and Find Full Text PDF

Diquat Induces Cell Death and dopamine Neuron Loss via Reactive Oxygen Species Generation in .

Environ Sci Technol

January 2025

School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.

Diquat (DQ), a contact herbicide extensively utilized in both agricultural and nonagricultural domains, exhibits a high correlation with neuronal disorders. Nevertheless, the toxicity and underlying mechanisms associated with exposure to environmental concentrations of DQ remain ambiguous. Here, we report dose-dependent cellular neurotoxicity of DQ in .

View Article and Find Full Text PDF

Introduction: Extensive agricultural activity results in significant exposure to pesticides, particularly glyphosate, which has been linked to immunological disorders, including apoptosis and inflammation. , a species from the Bromeliaceaefamily native to Mexico, is traditionally used in folk medicine for its medicinal properties, including anti-inflammatory effects. This research aimed to evaluate the protective effects of extract on human peripheral blood mononuclear cells (PBMCs) exposed to Faena®, a commercially available glyphosate-based herbicide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!