Plants undergo two different developmental programs depending on whether they are growing in darkness (skotomorphogenesis) or in the presence of light (photomorphogenesis). It has been proposed that the latter is the default pathway followed by many plants after germination and before the seedling emerges from soil. The transition between the two pathways is tightly regulated. The conserved COP1-based complex is central in the light-dependent repression of photomorphogenesis in darkness. Besides this control, hormones such as brassinosteroids (BRs), cytokinins, auxins, or ethylene also have been shown to regulate, to different extents, this developmental switch. In the present work, we show that the hormone gibberellin (GA) widely participates in this regulation. Studies from Arabidopsis show that both chemical and genetic reductions of endogenous GA levels partially derepress photomorphogenesis in darkness. This is based both on morphological phenotypes, such as hypocotyl elongation and hook and cotyledon opening, and on molecular phenotypes, such as misregulation of the light-controlled genes CAB2 and RbcS. Genetic studies indicate that the GA signaling elements GAI and RGA participate in these responses. Our results also suggest that GA regulation of this response partially depends on BRs. This regulation seems to be conserved across species because lowering endogenous GA levels in pea (Pisum sativum) induces full de-etiolation in darkness, which is not reverted by BR application. Our results, therefore, attribute an important role for GAs in the establishment of etiolated growth and in repression of photomorphogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC389929 | PMC |
http://dx.doi.org/10.1104/pp.103.035451 | DOI Listing |
Plant Sci
January 2025
Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina. Electronic address:
Mediator 17 (MED17) is part of the head of the Mediator complex, which regulates transcription initiation in different eukaryotic organisms, including plants. We have previously characterized MED17 roles in Arabidopsis plants exposed to UV-B radiation, revealing its involvement in various aspects of the DNA damage response after exposure. med17 mutant plants showed altered HY5 expression, which encodes a transcription factor with a central role in photomorphogenesis.
View Article and Find Full Text PDFPlant Physiol
December 2024
Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China.
Plants dynamically modulate their growth and development to acclimate to the fluctuating light environment via a complex phytohormone network. However, the dynamic molecular regulatory mechanisms underlying how plants regulate phytohormones during skotomorphogenesis and photomorphogenesis are largely unknown. Here, we identified a HD-ZIP II transcription factor, HOMEODOMAIN ARABIDOPSIS THALIANA1 (HAT1), as a key node that modulates the dose effects of brassinosteroids (BRs) and auxin on hypocotyl growth during skotomorphogenesis and photomorphogenesis.
View Article and Find Full Text PDFGene
December 2024
State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Beijing 100081, China; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:
Light is a vital environmental factor that promotes the growth and development of edible fungi mycelium. Under white light, the mycelium color of Sanghuangporus vaninii shifts during its growth stages. To investigate the impact of visible light on mycelial morphogenesis, a comparative transcriptomic analysis was conducted.
View Article and Find Full Text PDFJ Integr Plant Biol
August 2024
Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China.
Deep sowing is a traditional method for drought resistance in maize production, and mesocotyl elongation is strongly associated with the ability of maize to germinate from deep soil. However, little is known about the functional genes and mechanisms regulating maize mesocotyl elongation. In the present study, we identified a plant-specific SIMILAR TO RCD-ONE (SRO) protein family member, ZmSRO1e, involved in maize mesocotyl elongation.
View Article and Find Full Text PDFPlant Biotechnol J
September 2024
National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong, China.
Higher-order chromatin structure is critical for regulation of gene expression. In plants, light profoundly affects the morphogenesis of emerging seedlings as well as global gene expression to ensure optimal adaptation to environmental conditions. However, the changes and functional significance of chromatin organization in response to light during seedling development are not well documented.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!