In this study, we have evaluated the molecular mechanism of Src activation after its interaction with estrogen receptor alpha (ERalpha) and a newly identified scaffold protein, called MNAR (modulator of nongenomic activity of ER). Under basal condition, Src enzymatic activity is inhibited by intramolecular interactions. The enzyme can be activated by interaction between the SH2 domain of Src and phosphotyrosine-containing sequences and/or by interaction between the SH3 domain of Src and proteins containing PXXP motifs. Mutational analysis and functional evaluation of MNAR and the use of ERalpha and cSrc mutants revealed that MNAR interacts with Src's SH3 domain via its N-terminal PXXP motif. Mutation of this motif abolished both the MNAR-induced activation of Src and the stimulation of ER transcriptional activity. ER interacts with Src's SH2 domain using phosphotyrosine 537, and this complex was further stabilized by MNAR-ER interaction. Mapping studies reveal that both the A/B domain and Y537 of ERalpha are required for MNAR-induced activation of ER transcriptional activity. The region responsible for MNAR interaction with ER maps to two N-terminal LXXLL motifs of MNAR. Mutation of these motifs prevented ER-MNAR complex formation and eliminated activation of the Src/MAPK pathway. These data explicate how the coordinate interactions between MNAR, ER, and Src lead to Src activation. Our findings also demonstrate that MNAR is a scaffold protein that mediates ER-Src interaction and plays an important role in the integration of ER action in Src-mediated signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/me.2003-0335 | DOI Listing |
Breast Cancer Res
January 2025
Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 50153, USA.
Resistance to endocrine therapies remains a major clinical hurdle in breast cancer. Mutations to estrogen receptor alpha (ERα) arise after continued therapeutic pressure. Next generation selective estrogen receptor modulators and degraders/downregulators (SERMs and SERDs) show clinical efficacy, but responses are often non-durable.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China.
The benefit of adjuvant chemotherapy (CT) for hormone receptor-negative T1a and T1bN0M0 breast cancer remains uncertain. Our study was to explore prognostic value and identify candidates of adjuvant CT for these patients. The data of hormone receptor-negative T1a and T1bN0M0 breast cancer patients were extracted from the Surveillance, Epidemiology, and End Results (SEER) database from 2010 to 2015.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University); Joint Key Laboratory of Endemic Diseases(Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University); Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, People's Republic of China. Electronic address:
Background: Skeletal fluorosis is a chronic metabolic bone disease caused by excessive accumulation of fluoride in the bones. Previous studies have found that when the intake of tea fluoride is similar, the prevalence of skeletal fluorosis varies greatly among different ethnic groups, which may be related to different genetic backgrounds. Single nucleotide polymorphisms (SNPs) of estrogen receptor 1 (ESR1) and collagen type 1 α1 (COL1A1) were strongly associated with bone metabolism as well as bone growth and development, but their association with the risk of skeletal fluorosis has not been reported.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Stomatology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No. 242, Guangji Road, Suzhou, Jiangsu Province 215000, China. Electronic address:
Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in utero can result in osteogenic defect during palatogenesis, but the effects on other craniofacial bones and underlying mechanisms remain to be characterized. By treating pregnant mice with TCDD (40 μg/kg) at the vital craniofacial patterning stages (embryonic day 8.5, 10.
View Article and Find Full Text PDFRSC Med Chem
December 2024
State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University Wuhan 430062 China
Despite the success of endocrine therapies in treating ER-positive breast cancer, the development of resistance remains a significant challenge. Estrogen receptor targeting proteolysis-targeting chimeras (ER PROTACs) offer a unique approach by harnessing the ubiquitin-proteasome system to degrade ER, potentially bypassing resistance mechanisms. In this review, we present the drug design, efficacy and early clinical trials of these ER PROTACs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!