Thromboxane (TX) A2 is released from multiple cell types and is a prime mediator of the pathogenesis of many vascular events, including angiogenesis. Endothelial cells express TXA2 receptors (TP) but the effects of TP stimulation on angiogenesis remain controversial. In this study, we show that stimulation of endothelial cell TP impairs ligand-induced FGF receptor internalization and consequently abrogates FGF-2-induced endothelial cell migration in vitro and angiogenesis in vivo. Prevention of FGF-2-induced angiogenesis was associated with expression of the TPbeta isoform. The deficit in FGFR1 internalization was mediated through activation of TPbeta preventing the FGF-2-mediated decrease in p53 expression, thus enhancing thrombospondin-1 (TSP-1) release from EC and reducing FGFR1 internalization. Once released TSP-1 interacted with the alpha(v)beta3 integrin on the EC surface. On stimulation, FGFR1 and alpha(v)beta3 were found to associate in a complex. We determined that complex formation was important for receptor internalization as conditions that inhibit FGFR1 internalization, such as inappropriate ligation of alpha(v)beta3 by either TSP-1 or a neutralizing antibody, disrupted the complex. These results establish a novel role for isoform specific regulation of angiogenesis by TP, provide the first functional significance for the existence of two TP isoforms in humans, and clarify the mechanism by which TP signaling regulates FGFR1 kinetics and signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.RES.0000122043.11286.57 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!