AI Article Synopsis

  • The research explores the potential of generating cardiac myocytes from adult rodent bone marrow cells (BMCs) to improve therapies for heart disease.
  • The growth factor PDGF-AB was found to significantly increase the speed of myocyte development in vitro and enhance the formation of cardiac myocyte bundles in hearts affected by myocardial infarction.
  • However, while PDGF-AB improved generation rates, it did not lead to better heart function compared to treatments using either BMCs or PDGF-AB alone, indicating that maintaining proper cellular arrangement is crucial for restoring heart function effectively.

Article Abstract

The directed generation of cardiac myocytes from endogenous stem cells offers the potential for novel therapies for cardiovascular disease. To facilitate the development of such approaches, we sought to identify and exploit the pathways directing the generation of cardiac myocytes from adult rodent bone marrow cells (BMCs). In vitro cultures supporting the spontaneous generation of functional cardiac myocytes from murine BMCs demonstrated induced expression of platelet-derived growth factor (PDGF)-A and -B isoforms with alpha- and beta-myosin heavy chains as well as connexin43. Supplementation of PDGF-AB speeded the kinetics of myocyte development in culture by 2-fold. In a rat heart, myocardial infarction pretreatment model PDGF-AB also promoted the derivation of cardiac myocytes from BMCs, resulting in a significantly greater number of islands of cardiac myocyte bundles within the myocardial infarction scar compared with other treatment groups. However, gap junctions were detected only between the cardiac myocytes receiving BMCs alone, but not BMCs injected with PDGF-AB. Echocardiography and exercise testing revealed that the functional improvement of hearts treated with the combination of BMCs and PDGF-AB was no greater than with injections of BMCs or PDGF-AB alone. These studies demonstrated that PDGF-AB enhances the generation of BMC-derived cardiac myocytes in rodent hearts, but suggest that alterations in cellular patterning may limit the functional benefit from the combined injection of PDGF-AB and BMCs. Strategies based on the synergistic interactions of PDGF-AB and endogenous stem cells will need to maintain cellular patterning in order to promote the restoration of cardiac function after acute coronary occlusion.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.RES.0000122042.51161.B6DOI Listing

Publication Analysis

Top Keywords

cardiac myocytes
28
cardiac
9
platelet-derived growth
8
generation cardiac
8
endogenous stem
8
stem cells
8
bmcs
8
pdgf-ab
8
myocardial infarction
8
bmcs pdgf-ab
8

Similar Publications

Aim: Comparative assessment of structural changes in cardiomyocyte mitochondria of the right atrial appendage and the mitochondrial respiratory function in peripheral blood leukocytes in a cohort of patients after acute decompensated heart failure (ADHF) and with stable chronic heart failure of ischemic etiology with reduced ejection fraction (CHFrEF) or moderately reduced ejection fraction (CHFmrEF) of the left ventricle.

Material And Methods: The study analyzed 40 micrographs of right atrial appendage cardiomyocytes obtained from 12 patients with CHFrEF and CHFmrEF. The study protocol was registered on ClinicalTrials.

View Article and Find Full Text PDF

[Cardiac β-adrenergic receptor regulation of mitochondrial function in heart failure].

Sheng Li Xue Bao

December 2024

Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; Institute of Advanced Clinical Medicine, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.

Heart failure is characterized by abnormal β-adrenergic receptor (β-AR) activation and mitochondrial dysfunction. In heart failure, overactivation of β-AR mediates key pathological processes in cardiomyocytes, including oxidative stress, calcium overload and metabolic abnormalities, which subsequently lead to inflammation, myocardial apoptosis and necrosis. Mitochondria are the core organelles for energy metabolism, and also play a vital role in calcium homeostasis, redox balance and signaling transduction.

View Article and Find Full Text PDF

Background: Diabetes is a primary contributor to diabetic cardiomyopathy (DbCM), which is marked by metabolic imbalances such as elevated blood glucose and lipid levels, leading to significant structural and functional alterations in the myocardium. Elevated free fatty acids (FFAs) and hyperglycemia play critical roles in DbCM development, with FFAs inducing insulin resistance in cardiomyocytes and promoting lipid accumulation, resulting in oxidative stress and fibrosis. Current research suggests that glucagon-like peptide-1 (GLP-1) receptor agonists may effectively mitigate DbCM, although an effective treatment for this condition remains elusive, and the precise mechanisms of this protective effect are not fully understood.

View Article and Find Full Text PDF

To get insight into the thawing and salting in recovery and protection mechanisms on quality in frozen meat after subsequent cooking. The myofiber morphological-water evolution and quality changes in beef during freezing-thawing-cooking and freezing-cooking treatments were investigated. The cooking losses of fresh-cooked, frozen-cooked, and frozen-thawed-cooked samples were 27.

View Article and Find Full Text PDF

Changes of shrimp myofibrillar proteins hydrolyzed by Virgibacillus proteases: Structural characterization, mechanism visualization, and flavor compound formation.

Food Res Int

January 2025

State Key Laboratory of Food Science and Resources, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, China; Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 31200, China; National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing 646000, Zhejiang, China. Electronic address:

To explore the mechanism of Virgibacillus proteases on hydrolysis of shrimp myofibrillar protein (SMP) and formation of volatile compounds, the fermented broth of Virgibacillus halodenitrificans was purified and the protease was identified as peptidase S8. The enzyme had optimum activity at pH 7.0-8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!