Gene expression patterns of CD34(+)CD38(-) cells derived from human embryonic stem cells (ESCs) were compared with those of cells isolated from adult human bone marrow (BM) using microarrays; 1692 and 1494 genes were expressed at levels at least 3-fold above background in cells from BM and ESCs, respectively. Of these, 494 showed similar levels of expression in cells from both sources, 791 genes were overexpressed in cells from BM (BM versus ESCs, at least 2-fold), and 803 genes were preferentially expressed in cells from ESCs (ESCs versus BM, at least 2-fold). The message of the flt-3 gene was markedly decreased in cells from ESCs, whereas there was substantial flt-3 expression in cells from BM. High levels of embryonic epsilon-globin expression were observed-but no adult beta-globin message-in CD34(+)CD38(-) cells from ESCs, whereas high levels of beta-globin expression-but no embryonic epsilon-globin message-could be detected in cells from BM. Furthermore, high levels of major histocompatibility complex (MHC) gene expression were demonstrated in cells from BM but very low levels of MHC message in corresponding cells from ESCs. These observations demonstrate that CD34(+)CD38(-) cells derived from ESCs correspond consistently to an early developmental stage at which the yolk sac and fetal liver are the primary sites of hematopoiesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1182/blood-2003-10-3575 | DOI Listing |
Acta Naturae
January 2024
Pluripotency Dynamics Group, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation.
Embryonic stem cells (ESCs) hold great promise for regenerative medicine thanks to their ability to self-renew and differentiate into somatic cells and the germline. ESCs correspond to pluripotent epiblast - the tissue from which the following three germ layers originate during embryonic gastrulation: the ectoderm, mesoderm, and endoderm. Importantly, ESCs can be induced to differentiate toward various cell types by varying culture conditions, which can be exploited for modeling of developmental processes such as gastrulation.
View Article and Find Full Text PDFLife Med
October 2024
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China.
The ocular surface ectoderm (OSE) is essential for the development of the ocular surface, yet the molecular mechanisms driving its differentiation are not fully understood. In this study, we used single-cell transcriptomic analysis to explore the dynamic cellular trajectories and regulatory networks during the differentiation of embryonic stem cells (ESCs) into the OSE lineage. We identified nine distinct cell subpopulations undergoing differentiation along three main developmental branches: neural crest, neuroectodermal, and surface ectodermal lineages.
View Article and Find Full Text PDFToxins (Basel)
December 2024
College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China.
Zearalenone (ZEA) is a mycotoxin commonly found in moldy cereals and has a range of toxic effects that have seriously affected animal husbandry. Rutin, a natural flavonoid with antioxidant activities, has been studied for its potential involvement in mitigating ZEA-induced apoptosis in porcine endometrial stromal cells (ESCs) and its potential molecular mechanism, particularly concerning the expression of Nrf2. This study investigates the molecular pathways by which rutin alleviates ZEA-induced ESC apoptosis, focusing on the role of Nrf2.
View Article and Find Full Text PDFG3 (Bethesda)
January 2025
Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S3G5, Canada.
Sex-determining region Y box 2 (Sox2) is a critical transcription factor for embryogenesis and neural stem and progenitor cell (NSPC) maintenance. While distal enhancers control Sox2 in embryonic stem cells (ESCs), enhancers closer to the gene are implicated in Sox2 transcriptional regulation in neural development. We hypothesize that a downstream enhancer cluster, termed Sox2 regulatory regions 2-18 (SRR2-18), regulates Sox2 transcription in neural stem cells and we investigate this in NSPCs derived from mouse ESCs.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
January 2025
Marine Immunology Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA.
The overall goal of this research was to develop an embryonic stem cell (ESC) line from the Pacific white shrimp, Litopenaeus vannamei, to support production of cell-based cultivated seafood products towards meeting a growing global demand for sustainable seafood. It was hypothesized that characteristics of ESCs, such as high proliferation and pluripotency, would facilitate development of a continuous cell line that could be triggered to differentiate into a muscle cell phenotype. The targeted approach was based on collection of ESCs from fertilized shrimp eggs at the blastomere stage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!