Friedreich ataxia is caused by expansion of a GAA triplet repeat (GAA-TR) in the FRDA gene. Normal alleles contain <30 triplets, and disease-causing expansions (66-1700 triplets) arise via hyperexpansion of premutations (30-65 triplets). To gain insight into GAA-TR instability we analyzed all triplet repeats in the human genome. We identified 988 (GAA)(8+) repeats, 291 with >or=20 triplets, including 29 potential premutations (30-62 triplets). Most other triplet repeats were restricted to <20 triplets. We estimated the expected frequency of (GAA)(6+) repeats to be negligible, further indicating that GAA-TRs have undergone significant expansion. Eighty-nine percent of (GAA)(8+) sequences map within G/A islands, and 58% map within the poly(A) tails of Alu elements. Only two other (GAA)(8+) sequences shared the central Alu location seen at the FRDA locus. One showed allelic variation, including expansions analogous to short Friedreich ataxia mutations. Our data demonstrate that GAA-TRs have expanded throughout primate evolution with the generation of potential premutation alleles at multiple loci.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2003.09.001DOI Listing

Publication Analysis

Top Keywords

expansion gaa
8
gaa triplet
8
triplet repeats
8
repeats human
4
human genome
4
genome unique
4
unique origin
4
origin frda
4
frda mutation
4
mutation center
4

Similar Publications

Recent Advances in the Genetics of Ataxias: An Update on Novel Autosomal Dominant Repeat Expansions.

Curr Neurol Neurosci Rep

January 2025

Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada.

Purpose Of Review: Autosomal dominant cerebellar ataxias, also known as spinocerebellar ataxias (SCAs), are genetically and clinically diverse neurodegenerative disorders characterized by progressive cerebellar dysfunction. Despite advances in sequencing technologies, a large proportion of patients with SCA still lack a definitive genetic diagnosis. The advent of advanced bioinformatic tools and emerging genomics technologies, such as long-read sequencing, offers an unparalleled opportunity to close the diagnostic gap for hereditary ataxias.

View Article and Find Full Text PDF

Friedreich Ataxia: An (Almost) 30-Year History After Gene Discovery.

Neurol Genet

February 2025

Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.

In the late 1800s, Nikolaus Friedreich first described "degenerative atrophy of the posterior columns of the spinal cord," noting its connection to progressive ataxia, sensory loss, and muscle weakness, now recognized as Friedreich ataxia (FRDA). Renewed interest in the disease in the 1970s and 80s by the Quebec Cooperative Group and by Anita Harding led to the development of clinical diagnostic criteria and insights into associated biochemical abnormalities, although the primary defect remained unknown. In 1988, Susan Chamberlain mapped FRDA's location on chromosome 9.

View Article and Find Full Text PDF

Friedreich ataxia (FRDA) is a slowly progressive neurological disease resulting from decreased levels of the protein frataxin, a small mitochondrial protein that facilitates the synthesis of iron-sulfur clusters in the mitochondrion. It is caused by GAA (guanine-adenine-adenine) repeat expansions in the gene in 96% of patients, with 4% of patients carrying other mutations (missense, nonsense, deletion) in the gene. Compound heterozygote patients with one expanded GAA allele and a non-GAA repeat mutation can have subtle differences in phenotype from typical FRDA, including, in patients with selected missense mutations, both more severe features and less severe features in the same patient.

View Article and Find Full Text PDF

Dominantly inherited intronic GAA repeat expansions in the fibroblast growth factor 14 gene have recently been shown to cause spinocerebellar ataxia 27B. Currently, the pathogenic threshold of (GAA) repeat units is considered highly penetrant, while (GAA) is likely pathogenic with reduced penetrance. This study investigated the frequency of the GAA repeat expansion and the phenotypic profile in a Cypriot cohort with unresolved late-onset cerebellar ataxia.

View Article and Find Full Text PDF

High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!