The reductive decomposition of both SNAP and SNOCap by ascorbate in aqueous solution (in the presence of EDTA) was thoroughly investigated. Nitric oxide (NO) release from the reaction occurs in an ascorbate concentration and pH dependent manner. Rates and hence NO release increased drastically with increasing pH, signifying that the most highly ionized form of ascorbate is the more reactive species. The experiments were monitored spectrophotometrically, and second-order rate constants calculated at 37 degrees C for the reduction of SNAP are k(b)=9.81+/-1.39 x 10(-3) M(-1) s(-1) and k(c)=662+/-38 M(-1) s(-1) and for SNOCap are k(b)=2.57+/-1.29 x 10(-2) M(-1) s(-1) and k(c)=49.7+/-1.3 M(-1) s(-1). k(b) and k(c) are the second-order rate constants via the ascorbate monoanion (HA-) and dianion (A2-) pathways, respectively. Activation parameters were also calculated and are DeltaHb++ =93+/-7 kJ mol(-1), DeltaSb++ =15+/-2 J K(-1) mol(-1) and DeltaHc++ =51+/-5 kJ mol(-1), DeltaSc++ =-28+/-3 J K(-1) mol(-1) with respect to the reactions involving SNAP. Those for the reaction between SNOCap and ascorbate were calculated to be DeltaHb++ =63+/-11 kJ mol(-1), DeltaSb++ =-71+/-20 J K(-1) mol(-1) and DeltaHc++ =103+/-7 kJ mol(-1), DeltaSc++ =118+/-8 J K(-1) mol(-1). The effect of Cu2+/Cu+ ions on the reductive decompositions of these S-nitrosothiols was also investigated in absence of EDTA. SNOCap exhibits relatively high stability at near physiological conditions (37 degrees C and pH 7.55) even in the presence of micromolar concentrations of Cu2+, with decomposition rate constant being 0.011 M(-1) s(-1) in comparison to SNAP which is known to be more susceptible to catalytic decomposition by Cu2+ (second-order rate constant of 20 M(-1) s(-1) at pH 7.4 and 25 degrees C). It was also observed that the reductive decomposition of SNAP is not catalyzed by alkali metal ions, however, there was an increase in rate as the ionic strength increases from 0.2 to 0.5 mol dm(-3) NaCl.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpc.2003.08.011DOI Listing

Publication Analysis

Top Keywords

m-1 s-1
24
k-1 mol-1
16
second-order rate
12
aqueous solution
8
reductive decomposition
8
decomposition snap
8
snocap ascorbate
8
rate constants
8
calculated deltahb++
8
mol-1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!