The LcrV protein (V-antigen) is a multifunctional virulence factor in Yersinia pestis, the causative agent of plague. LcrV regulates the translocation of cytotoxic effector proteins from the bacterium into the cytosol of mammalian cells via a type III secretion system, possesses antihost activities of its own, and is also an active and passive mediator of resistance to disease. Although a crystal structure of this protein has been actively sought for better understanding of its role in pathogenesis, the wild-type LcrV was found to be recalcitrant to crystallization. We employed a surface entropy reduction mutagenesis strategy to obtain crystals of LcrV that diffract to 2.2 A and determined its structure. The refined model reveals a dumbbell-like molecule with a novel fold that includes an unexpected coiled-coil motif, and provides a detailed three-dimensional roadmap for exploring structure-function relationships in this essential virulence determinant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.str.2004.01.010 | DOI Listing |
BMC Infect Dis
January 2025
Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, 21702, United States of America.
Background: Point of need diagnostics provide efficient testing capability for remote or austere locations, decreasing the time to answer by minimizing travel or sample transport requirements. Loop-mediated isothermal amplification (LAMP) is an appealing technology for point-of-need diagnostics due to its rapid analysis time and minimal instrumentation requirements.
Methods: Here, we designed and optimized nine LAMP assays that are sensitive and specific to targeted bacterial select agents including Bacillus anthracis, Francisella tularensis, Yersinia pestis, and Brucella spp.
Lancet Reg Health West Pac
January 2025
State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, PR China.
Background: As natural reservoirs of diverse pathogens, small mammals are considered a key interface for guarding public health due to their wide geographic distribution, high density and frequent interaction with humans.
Methods: All formally recorded natural occurrences of small mammals (Order: Rodentia, Eulipotyphla, Lagomorpha, and Scandentia) and their associated microbial infections in China were searched in the English and Chinese literature spanning from 1950 to 2021 and geolocated. Machine learning models were applied to determine ecological drivers for the distributions of 45 major small mammal species and two common rodent-borne diseases (RBDs), and model-predicted potential risk locations were mapped.
Integr Zool
January 2025
Plague Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar.
Plague, a zoonotic disease caused by Yersinia pestis, remains a major public health threat in several parts of the world, including Madagascar. Factors underlying long-term persistence and emergence of the pathogen remain poorly understood. We implemented a longitudinal survey to provide insights into plague reservoir ecology within an endemic focus.
View Article and Find Full Text PDFInt J Food Microbiol
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:
J Hist Dent
January 2025
Ecole de Médecine Dentaire de Marseille, 27 boulevard Jean Moulin 13385 Marseille Aix-Marseille Université, CNRS, EFS, ADES, Marseille, France.
Plague is an infectious disease caused by a Gram-negative bacterium, , and has affected human populations in different pandemics for at least 5000 years. The last plague epidemic in France occurred at the beginning of eighteenth century in Marseille, in southeast France. Marseille is today France's second largest city.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!