Mounting evidence suggests that delayed xenograft rejection (DXR) of discordant xenografts has a strong humoral component. To explore the possibility of targeting this humoral response more efficiently, we performed a preliminary study in baboons immunized against pig blood cells using the immunosuppressor mitoxantrone (Mx). The results from this study showed that, in comparison with cyclophosphamide (CyP), Mx induced a long-lasting depletion of circulating B cells within 6 days of its administration and delayed secondary anti-Gal antibody (Ab) responses to pig blood cell immunizations. Given these results, we next evaluated Mx in an in vivo model of pig to baboon renal xenotransplantation. We performed a series of renal xenotransplantations in baboons using human CD55-CD59 transgenic donor pigs. In the first group of baboons (Mx group; n = 4) Mx was administered 6 days prior to the day of transplantation, the objective being to perform the xenotransplantation in a context where the recipient would have few remaining circulating B cells and thus have an impaired capacity to mount an Ab response to the xenograft. We compared this group to a second group of baboons treated with CyP starting 1 day prior to transplantation (CyP group; n = 2). All baboons receiving Mx or CyP received an additional immunosuppression of cyclosporin A, mycophenolate mofetil and steroids. No hyperacute rejection was observed in either group but all xenografts underwent DXR. Mx did not show superiority to CyP in terms of graft survival with a mean survival time of 8 +/- 2 days compared with 9 days for both CyP-treated baboons. Neither CyP nor Mx decreased serum levels of pre-existing anti-Gal Abs but levels of these Abs decreased dramatically within 1 day of transplantation, likely reflecting their immediate trapping within the xenograft. Interestingly however, in contrast to CyP, Mx inhibited the return of anti-Gal immunoglobulin M (IgM) to the circulation, even at the time of rejection. Nevertheless, strong intragraft deposits of IgM, IgG and the activated complement complex C5b-9 were observed in biopsies at rejection. Furthermore, despite the expected profound depletion of circulating B cells by Mx within 6 days of its administration, biopsies from both groups at rejection displayed a mild B cell infiltrate accompanied by a strong macrophage and intermediate T-cell infiltration, the latter tending to be more abundant in Mx-treated animals. Our data show that in this particular model of pig to baboon xenotransplantation and at the dose used, Mx was not superior to CyP in conferring protection against rejection, despite its capacity to profoundly deplete circulating B cells and to inhibit anti-Gal Ab responses to xenografts. DXR was thus possible without the return of anti-Gal Abs and may have been mediated by the early fixation of pre-existing Abs with secondary complement activation. However, although Mx was not more efficient than CyP in controlling DXR, its capacity to deplete B cells and delay Ab recovery may be beneficial in the context of Gal knockout organ transplantation where the induced Ab response is likely to take precedence over the preformed response.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1399-3089.2004.00040.xDOI Listing

Publication Analysis

Top Keywords

circulating cells
16
group baboons
12
cyp
9
renal xenotransplantation
8
comparison cyclophosphamide
8
pig blood
8
depletion circulating
8
cells days
8
days administration
8
model pig
8

Similar Publications

Malaria vaccines consisting of metabolically active Plasmodium falciparum (Pf) sporozoites can offer improved protection compared with currently deployed subunit vaccines. In a previous study, we demonstrated the superior protective efficacy of a three-dose regimen of late-arresting genetically attenuated parasites administered by mosquito bite (GA2-MB) compared with early-arresting counterparts (GA1-MB) against a homologous controlled human malaria infection. Encouraged by these results, we explored the potency of a single GA2-MB immunization in a placebo-controlled randomized trial.

View Article and Find Full Text PDF

Purpose Of Review: Human epidermal growth factor receptor 2 (HER2) is a critical target in advanced gastric cancer (AGC). This review highlights the current treatment landscape, lessons learned from past clinical trials, and prospects for future treatment strategies for HER2-positive AGC.

Recent Findings: Trastuzumab had been the standard treatment for HER2-positive AGC for a decade, and subsequently, trastuzumab deruxtecan, an antibody-drug conjugate (ADC), emerged with an impressive response.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) drive metastasis, the leading cause of death in individuals with breast cancer. Due to their low abundance in the circulation, robust CTC expansion protocols are urgently needed to effectively study disease progression and therapy responses. Here we present the establishment of long-term CTC-derived organoids from female individuals with metastatic breast cancer.

View Article and Find Full Text PDF

Gastrointestinal absorption and its regulation of hawthorn leaves flavonoids.

Sci Rep

January 2025

School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P.R. China.

Hawthorn leave flavonoids (HLF) are widely used as an herb or dietary supplements for cardio-cerebrovascular diseases. However, its gastrointestinal absorption behavior and mechanism have not been disclosed. In this study, gastrointestinal absorption and its regulation of 4''-O-glucosylvitexin (GLV), 2''-O-rhamnosylvitexin (RHV), vitexin (VIT), rutin (RUT) and hyperoside (HP) in HLF were investigated using in vitro, in situ and in vivo models.

View Article and Find Full Text PDF

Glucokinase: from allosteric glucose sensing to disease variants.

Trends Biochem Sci

January 2025

Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, Denmark. Electronic address:

Human glucokinase (GCK) functions as a glucose sensor in the pancreas and liver, where GCK activity regulates insulin secretion and glycogen synthesis, respectively. GCK's low affinity for glucose and the sigmoidal substrate dependency of enzymatic turnover enables it to act as a sensor that makes cells responsive to changes in circulating glucose levels. Its unusual kinetic properties are intrinsically linked to the enzyme's conformational dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!