Type II pneumocytes (T2P) are integral in preserving the integrity of the alveolar space by modulating the fluid composition surrounding the alveolar epithelium. There is also mounting evidence supporting their contribution to the development of acute inflammatory lung injury subsequent to oxidative stress. This study characterized the response of T2P to in vitro hypoxia and reoxygenation (H&R). Rat T2P from a cultured cell line (RLE-6TN) were rendered hypoxic for 2 h, and reoxygenated for up to 6 h. Activation of signaling kinases, the nuclear translocation of proinflammatory transcription factors, and quantification of secreted cytokine and chemokine protein content were assessed. Type II pneumocytes expressed activated extracellular signal regulated kinase (ERK) 1/2 maximally at 15 min of reoxygenation. C-jun n-terminal kinase (JNK) and p38 activation was minimal at all time points studied. The nuclear translocation of nuclear factor kappa B (NFkappaB) and activator protein (AP)-1 were dramatic after 15 min of reoxygenation. There was a significant increase in the protein secretion of CINC (p = 0.03), IL-1beta (p = 0.02), and monocyte chemoattractant protein-1 (p < 0.001) at 6 h of reoxygenation. Type II pneumocytes respond directly to H&R. ERK 1/2 activity peaks at 15 min of reoxygenation, and correlates temporally with the nuclear translocation of NFkappaB and AP-1. These signaling cascades likely promote the elaboration of proinflammatory mediators.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-6143.2004.00352.xDOI Listing

Publication Analysis

Top Keywords

type pneumocytes
16
nuclear translocation
12
min reoxygenation
12
vitro hypoxia
8
hypoxia reoxygenation
8
reoxygenation type
8
erk 1/2
8
reoxygenation
6
proinflammatory response
4
response alveolar
4

Similar Publications

PBAE-PEG based lipid nanoparticles for lung cell-specific gene delivery.

Mol Ther

January 2025

Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA. Electronic address:

Exemplified by successful use in COVID-19 vaccination, delivery of modified mRNA encapsulated in lipid nanoparticles provides a framework for treating various genetic and acquired disorders. However, lipid nanoparticles that can deliver mRNA into specific lung cell types have not yet been established. Here, we sought whether poly(®-amino ester)s (PBAE) or PEGylated PBAE (PBAE-PEG) in combination with 4A3-SC8/DOPE/cholesterol/DOTAP lipid nanoparticles (LNP) could deliver mRNA into different types of lung cells in vivo.

View Article and Find Full Text PDF

Disrupted neonatal lung alveologenesis often leads to bronchopulmonary dysplasia (BPD), the most common chronic lung disease in children. The inhibition of type 2 alveolar (AT2) cell proliferation plays an important role in the arrest of alveologenesis. However, the mechanism of AT2 cell proliferation retardation in BPD is still not fully elucidated.

View Article and Find Full Text PDF

Pulmonary alveolar proteinosis (PAP) is a rare pulmonary pathology characterized by the accumulation of surfactant within type II alveolar epithelial cells. Whole lung lavage is the standard treatment for pulmonary alveolar proteinosis involving a large volume of fluid is infused into one lung and subsequently retrieved while the other lung is remains ventilated. Fast-tracking a patient undergoing whole lung lavage requires vigilant monitoring of arterial blood gases, fluid status, and respiratory mechanics.

View Article and Find Full Text PDF

Background: Chemical-induced acute lung injury is characterized by impaired epithelial regenerative capacity, leading to acute pulmonary edema. Numerous studies have investigated the therapeutic potential of endogenous stem cells with particular emphasis on alveolar type 2 epithelial (AEC2) cells owing to their involvement in lung cell renewal. Sox9, a transcription factor known for its role in maintaining stem cell properties and guiding cell differentiation, marks a subset of AEC2 cells believed to contribute to epithelial repair.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease characterized by repetitive alveolar injuries with excessive deposition of extracellular matrix (ECM) proteins. A crucial need in understanding IPF pathogenesis is identifying cell types associated with histopathological regions, particularly local fibrosis centers known as fibroblast foci. To address this, we integrated published spatial transcriptomics and single-cell RNA sequencing (scRNA-seq) transcriptomics and adopted the Query method and the Overlap method to determine cell type enrichments in histopathological regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!