[reaction: see text] The synthesis of 2'-deoxycytidine nucleosides bearing amino and thiol groups appended to the 5-position of the nucleobase via a butynyl linker is described. The corresponding triphosphates were then synthesized from the nucleoside and incorporated into oligonucleotides by Vent (exo(-)) DNA polymerase. The ability of Vent (exo(-)) polymerase to amplify oligonucleotides containing these functionalized cytidine derivatives in a polymerase chain reaction (PCR) was demonstrated for the amino-functionalized derivative.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ol0360290 | DOI Listing |
Int J Mol Sci
September 2023
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 119991 Moscow, Russia.
The approach based on molecular modeling was developed to study dNTP derivatives characterized by new polymerase-specific properties. For this purpose, the relative efficiency of PCR amplification with modified dUTPs was studied using Taq, Tth, Pfu, Vent, Deep Vent, Vent (exo-), and Deep Vent (exo-) DNA polymerases. The efficiency of PCR amplification with modified dUTPs was compared with the results of molecular modeling using the known 3D structures of KlenTaq polymerase-DNA-dNTP complexes.
View Article and Find Full Text PDFAnal Bioanal Chem
May 2023
Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, 071002, People's Republic of China.
The detection of methyltransferase (MTase) activity is of great significance in methylation-related disease diagnosis and drug screening. Herein, a HpaII-assisted and linear amplification-enhanced exponential amplification strategy is proposed for sensitive and label-free detection of M.SssI MTase activity.
View Article and Find Full Text PDFAnal Chim Acta
January 2023
Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China; National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China. Electronic address:
DNA methyltransferase (DNA MTase) catalyzes the process of DNA methylation, and the aberrant DNA MTase activity is closely associated with cancer incidence and progression. Inspired by the exponential amplification reaction (EXPAR) characteristics, we developed an EXPAR-initiated CRISPR/Cas12a (EIC) strategy for sensitively detecting DNA MTase activity. A hairpin probe (HP) was designed with a palindromic sequence in the stem as substrate and NH-modified 3' end to prevent nonspecific amplification.
View Article and Find Full Text PDFSci Rep
December 2022
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
L-nucleosides were the most important antiviral lead compounds because they can inhibit viral DNA polymerase and DNA synthesis of many viruses, whereas they may lead to mutations in DNA replication and cause genomic instability. In this study, we reported the replicative bypass of L-deoxynucleosides in recombinant DNA by restriction enzyme-mediated assays to examine their impact on DNA replication in vitro and in E. coli cells.
View Article and Find Full Text PDFJ Am Chem Soc
June 2022
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India.
DNA polymerases can process a wide variety of structurally diverse nucleotide substrates, but the molecular basis by which the analogs are processed is not completely understood. Here, we demonstrate the utility of environment-sensitive heterocycle-modified fluorescent nucleotide substrates in probing the incorporation mechanism of DNA polymerases in real time and at the atomic level. The nucleotide analogs containing a selenophene, benzofuran, or benzothiophene moiety at the C5 position of 2'-deoxyuridine are incorporated into oligonucleotides (ONs) with varying efficiency, which depends on the size of the heterocycle modification and the DNA polymerase sequence family used.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!