Basic fibroblast growth factor (FGF) regulation of developmental markers in cell cultures derived from early zebrafish embryos was examined with the goal of in vitro culture of zebrafish embryonic stem cells and gaining an understanding of extracellular influences on early embryonic development. Markers were stem/primordial germ cell markers pou-2 and vas, neural markers zp-50, pax[zf-a], en-3, and wnt-1, and mesodermal markers gsc and myoD. Previously we had shown that FGF prevents the development of zebrafish pigment cells in vitro. In our culture system, FGF reduced expression of neural-specific markers, possibly implicating the FGF family in suppression of early neural cell development. Exposure to FGF for 24 hours at the time of seeding the cells was sufficient to suppress neural marker expression for a subsequent 4 days of culture, while absence of FGF for the first 24 hours of culture nullified the effect of FGF added subsequently. FGF predictably increased expression of gsc and myoD. Vas expression was unaffected, while pou-2 expression decreased with time in culture in the presence or absence of FGF. However, in situ hybridization identified a subpopulation of cells expressing pou-2, suggesting the possible continued existence of undifferentiated stem cells in the cultures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s101260000034 | DOI Listing |
Dis Model Mech
January 2025
Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland.
Atopic dermatitis (AD) is a chronic inflammatory skin disease, characterized by an impaired epidermal barrier and immunological alterations. The activity of the cytoprotective NRF2 transcription factor is reduced in the epidermis of AD patients. To determine the functional relevance of this deficiency, we used mice lacking fibroblast growth factor receptors 1 and 2 in keratinocytes (K5-R1/R2 mice), which exhibit several AD-like symptoms.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Pharmacy, Yueqing Third People's Hospital, Wenzhou, China.
Basic fibroblast growth factor (bFGF) is a significant member of the fibroblast growth factor (FGF) family. The bFGF has a three-dimensional structure comprising 12 reverse parallel β-folds. This structure facilitates tissue wound repair, angiogenesis, bone formation, cartilage repair, and nerve regeneration.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
Isoniazid and rifampicin co-therapy are the main causes of anti-tuberculosis drug-induced liver injury (ATB-DILI) and acute liver failure, seriously threatening human health. However, its pathophysiology is not fully elucidated. Growing evidences have shown that fibroblast growth factors (FGFs) play a critical role in diverse aspects of liver pathophysiology.
View Article and Find Full Text PDFCancer Sci
December 2024
Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS), Ningbo Institute of Materials Technology and Engineering, CAS Ningbo, Ningbo, China.
Urothelial carcinoma (UC) can arise from either the lower urinary tract or the upper tract; they represent different disease entities and require different clinical treatment strategies. A full understanding of the cellular characteristics in UC may guide the development of novel therapies. Here, we performed single-cell transcriptome analysis from four patients with UC of the bladder (UCB), five patients with UC of the ureter (UCU), and four patients with UC of the renal pelvis (UCRP) to develop a comprehensive cell atlas of UC.
View Article and Find Full Text PDFACS Appl Bio Mater
December 2024
Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China.
In this study, we designed a fusion protein, rhCR, by combining human collagen with the self-assembling peptide RADA-16 using genetic engineering technology. The rhCR protein was successfully expressed in . The rhCR can self-assemble into a three-dimensional nanofiber network under physiological conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!