We report two new structures of the quadruplex d(TGGGGT)4 obtained by single crystal X-ray diffraction. In one of them a thymine tetrad is found. Thus the yeast telomere sequences d(TG1-3) might be able to form continuous quadruplex structures, involving both guanine and thymine tetrads. Our study also shows substantial differences in the arrangement of thymines when compared with previous studies. We find five different types of organization: (i) groove binding with hydrogen bonds to guanines from a neighbour quadruplex; (ii) partially ordered groove binding, without any hydrogen bond; (iii) stacked thymine triads, formed at the 3'ends of the quadruplexes; (iv) a thymine tetrad between two guanine tetrads. Thymines are stabilized in pairs by single hydrogen bonds. A central sodium ion interacts with two thymines and contributes to the tetrad structure. (v) Completely disordered thymines which do not show any clear location in the crystal. The tetrads are stabilized by either Na+ or Tl+ ions. We show that by using MAD methods, Tl+ can be unambiguously located and distinguished from Na+. We can thus determine the preference for either ion in each ionic site of the structure under the conditions used by us.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC373404 | PMC |
http://dx.doi.org/10.1093/nar/gkh269 | DOI Listing |
Molecules
August 2023
Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
Quadruplexes (GQs), peculiar DNA/RNA motifs concentrated in specific genomic regions, play a vital role in biological processes including telomere stability and, hence, represent promising targets for anticancer therapy. GQs are formed by folding guanine-rich sequences into square planar G-tetrads which stack onto one another. Metal cations, most often potassium, further stabilize the architecture by coordinating the lone electron pairs of the O atoms.
View Article and Find Full Text PDFJ Dairy Sci
September 2023
State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China. Electronic address:
Biophys Chem
August 2023
Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada. Electronic address:
The solute urea has been used extensively as a denaturant in protein folding studies; double-stranded nucleic acid structures are also destabilized by urea, but comparatively less than proteins. In previous research, the solute has been shown to strongly destabilize folded G-quadruplex DNA structures. This contribution demonstrates the stabilizing effect of urea on the G-quadruplex formed by the oligodeoxyribonucleotide (ODN), G3T (d[5'-GGGTGGGTGGGTGGG-3']), and related sequences in the presence of sodium or potassium cations.
View Article and Find Full Text PDFBiochimie
September 2022
CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal. Electronic address:
G-rich aptamers such as AS1411 are small oligonucleotides that present several benefits comparatively to monoclonal antibodies, since they are easier to manufacture and store, have small size and do not stimulate an immune response. We analyzed AT11-B1, a modified sequence of AT11 (itself a modified version of AS1411), in which one thymine was removed from the bulge region. We studied G-quadruplex (G4) formation/stabilization using PhenDC3, PDS, BRACO-19, TMPyP4 and 360A ligands by different biophysical techniques, namely circular dichroism (CD), Förster resonance energy transfer (FRET-melting) and nuclear magnetic resonance (NMR).
View Article and Find Full Text PDFChempluschem
April 2021
Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstr. 30, 48149, Münster, Germany.
Guanine quadruplexes are tetra-stranded nucleic acid structures currently raising significant interest in the context of the development of potential anticancer therapeutics with a new mode of action. They are composed of planar guanine tetrads, allowing a high-affinity targeting by using molecules with a large π surface. However, the extreme topological versatility of guanine quadruplexes impedes a straightforward targeting of particular preselected guanine-rich sequences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!