Unlabelled: L-p-Boronophenylalanine (BPA) has been applied as a potential boron carrier for the treatment of malignant glioma in clinical boron neutron capture therapy (BNCT) since 1994. To provide the pharmacokinetics of BPA for clinical use of BNCT in Taiwan, 4-borono-2-(18)F-fluoro-L-phenylalanine-fructose ((18)F-FBPA-Fr) was synthesized and the biologic characteristics of this radiotracer in glioma-bearing rats were investigated.
Methods: Radiolabeled (18)F-F(2) was produced via the (20)Ne(d,alpha)(18)F reaction, and (18)F-acetyl hypofluorite ((18)F-AcOF) was generated by passing (18)F-F(2) through a column filled with tightly packed KOAc/HOAc powder. The effluent containing (18)F-AcOF was bubbled into BPA in trifluoroacetic acid, then purified by high-performance liquid chromatography, and further composited with fructose to afford (18)F-FBPA-Fr. Male Fischer 344 rats bearing F98 glioma in the left brain were used for biologic studies. The biodistribution of BPA-Fr and (18)F-FBPA-Fr was determined, and the microautoradiography and PET imaging of (18)F-FBPA-Fr were performed, on the 13th day after tumor inoculation.
Results: The radiochemical purity of (18)F-FBPA-Fr was >97% and the radiochemical yield of (18)F-FBPA-Fr was 20%-25%. In glioma-bearing rats, the accumulation ratios of B-10 for glioma-to-normal brain were 2.05, 1.86, 1.24, and 1.10 at 0.5, 1, 2, and 4 h, respectively, after administration of 43 mg BPA-Fr via the tail vein. The accumulation ratios of (18)F-FBPA-Fr for glioma-to-normal brain were 3.45, 3.13, 2.61, and 2.02, whereas the tumor-to-heart blood ratios were 1.72, 2.61, 2.00, and 1.93, respectively, for the same time points. The uptake characteristics of BPA-Fr and (18)F-FBPA-Fr in F98 glioma were similar with a maximum at 1 h after the drugs' administration. The results obtained from the biodistribution studies indicated that 0.5-1 h after BPA-Fr injection would be the optimal time for BNCT. Biodistribution, PET images, and brain microautoradiography of (18)F-FBPA-Fr all confirmed this finding.
Conclusion: (18)F-FBPA-Fr showed specific tumor uptake in F98 glioma-bearing rats and could be used as a probe for BPA-Fr in BNCT. This study provides useful information for the future clinical application of BNCT in brain tumor therapy.
Download full-text PDF |
Source |
---|
Theranostics
January 2025
Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, 94305, USA.
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults, characterized by resistance to conventional therapies and poor survival. Ferroptosis, a form of regulated cell death driven by lipid peroxidation, has recently emerged as a promising therapeutic target for GBM treatment. However, there are currently no non-invasive imaging techniques to monitor the engagement of pro-ferroptotic compounds with their respective targets, or to monitor the efficacy of ferroptosis-based therapies.
View Article and Find Full Text PDFPhys Imaging Radiat Oncol
April 2024
Univ. Grenoble Alpes, INSERM, UA07 STROBE, 2280 rue de la piscine, 38610 Gières, France.
Background And Purpose: Microbeam Radiation Therapy (MRT) aims to deliver higher doses to the target while minimizing radiation damage to healthy tissues using synchrotron x-ray microbeams. Translational MRT research has now started, driven by promising results from preclinical studies. This study aimed to propose a first dose-outcome model by analyzing micrometric dose distributions obtained with high-resolution 3D dose calculations, accounting for the inherent physical dose distribution complexity in MRT.
View Article and Find Full Text PDFNanotechnology
August 2024
School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, Odisha 751003, India.
The study explores anticancer potential of telmisartan (TS) loaded lipid nanocarriers (TLNs) in glioma cells as a potential repurposing nanomodality along with estimation of drug availability at rat brain. Experimental TLNs were produced by previously reported method and characterized.anticancer efficacy of experimental TLNs was estimated by MTT, confocal microscopy, and FACs analysis in glioma cells.
View Article and Find Full Text PDFSci Rep
May 2024
Physics Department, Universitat Autònoma de Barcelona (UAB), Campus UAB Bellaterra, 08193, Cerdanyola del Vallès, Spain.
The biology underlying proton minibeam radiation therapy (pMBRT) is not fully understood. Here we aim to elucidate the biological effects of pMBRT using Fourier Transform Infrared Microspectroscopy (FTIRM). In vitro (CTX-TNA2 astrocytes and F98 glioma rat cell lines) and in vivo (healthy and F98-bearing Fischer rats) irradiations were conducted, with conventional proton radiotherapy and pMBRT.
View Article and Find Full Text PDFInt J Mol Sci
November 2023
Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!