Acetyl-CoA carboxylase catalyzes the committed step in fatty acid synthesis in all plants, animals, and bacteria. The Escherichia coli form is a multifunctional enzyme consisting of three separate proteins: biotin carboxylase, carboxyltransferase, and the biotin carboxyl carrier protein. The biotin carboxylase component, which catalyzes the ATP-dependent carboxylation of biotin using bicarbonate as the carboxylate source, has a homologous functionally identical subunit in the mammalian biotin-dependent enzymes propionyl-CoA carboxylase and 3-methylcrotonyl-CoA carboxylase. In humans, mutations in either of these enzymes result in the metabolic deficiency propionic acidemia or methylcrotonylglycinuria. The lack of a system for structure-function studies of these two biotin-dependent carboxylases has prevented a detailed analysis of the disease-causing mutations. However, structural data are available for E. coli biotin carboxylase as is a system for its overexpression and purification. Thus, we have constructed three site-directed mutants of biotin carboxylase that are homologous to three missense mutations found in propionic acidemia or methylcrotonylglycinuria patients. The mutants M169K, R338Q, and R338S of E. coli biotin carboxylase were selected for study to mimic the disease-causing mutations M204K and R374Q of propionyl-CoA carboxylase and R385S of 3-methylcrotonyl-CoA carboxylase. These three mutants were subjected to a rigorous kinetic analysis to determine the function of the residues in the catalytic mechanism of biotin carboxylase as well as to establish a molecular basis for the two diseases. The results of the kinetic studies have revealed the first evidence for negative cooperativity with respect to bicarbonate and suggest that Arg-338 serves to orient the carboxyphosphate intermediate for optimal carboxylation of biotin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M311982200 | DOI Listing |
Sci Rep
December 2024
Department of Agronomy and Plant Breeding, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
Understanding the genetic basis of drought tolerance in safflower (Carthamus tinctorius L.) is essential for developing resilient varieties. In this study, we performed a genome-wide association study (GWAS) using DArTseq markers to identify marker-trait associations (MTAs) linked to drought tolerance across 90 globally diverse safflower genotypes.
View Article and Find Full Text PDFArch Biochem Biophys
December 2024
Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201-1881, USA. Electronic address:
Pyruvate carboxylase (PC) catalyzes the carboxylation of pyruvate to oxaloacetate which serves as an important anaplerotic reaction to replenish citric acid cycle intermediates. In most organisms, the PC-catalyzed reaction is allosterically activated by acetyl-coenzyme A. It has previously been reported that vertebrate PC can catalyze the hydrolysis of acetyl-CoA, offering a potential means for the enzyme to attenuate its allosteric activation.
View Article and Find Full Text PDFMethods Enzymol
November 2024
Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States. Electronic address:
Acetyl-CoA carboxylase catalyzes the first committed and regulated step in fatty acid synthesis in all animals, plants and bacteria. In most Gram-positive and Gram-negative bacteria, the enzyme is composed of three proteins: biotin carboxylase, biotin carboxyl carrier protein and carboxyltransferase. The reaction consists of two half-reactions.
View Article and Find Full Text PDFMethods Enzymol
November 2024
Department of Biological Sciences, Columbia University, New York, NY, United States. Electronic address:
Methods Enzymol
November 2024
Department of Biological Sciences, Marquette University, Milwaukee, WI, United States.
Biotin-dependent carboxylases catalyze the MgATP- and bicarbonate-dependent carboxylation of various acceptor substrates through a two-step carboxylation reaction. Biotin-dependent carboxylases play an essential role in the metabolism of key biomolecules and, therefore, they are the subject of ongoing drug discovery efforts, as well as of studies seeking to better characterize their structure and function. It has been an ongoing challenge to obtain high yields of mammalian biotin-dependent carboxylases for in vitro experimentation; these enzymes have not been successfully purified when recombinantly expressed from a bacterial expression host and only low yields of these recombinant, vertebrate enzymes have been obtained through expression in cell culture systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!