Mechanical forces are crucial to the regulation of cell and tissue morphology and function. At the cellular level, forces influence cytoskeletal organization, gene expression, proliferation, and survival. Integrin-mediated adhesions are intrinsically mechanosensitive and a large body of data implicates integrins in sensing mechanical forces. We review the relationship between integrins and mechanical forces, the role of integrins in cellular responses to stretch and fluid flow, and propose that some of these events are mechanistically related.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.R300038200 | DOI Listing |
Biotechnol J
December 2024
Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
Ultrasound (US) can easily penetrate media with excellent spatial precision corresponding to its wavelength. Naturally, US plays a pivotal role in the echolocation abilities of certain mammals such as bats and dolphins. In addition, medical US generated by transducers interact with tissues via delivering ultrasonic energy in the modes of heat generation, exertion of acoustic radiation force (ARF), and acoustic cavitation.
View Article and Find Full Text PDFBMC Musculoskelet Disord
December 2024
The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
Background: Patellar fractures present challenges in treatment, with traditional methods often leading to complications such as loss of reduction and implant failure. This study aimed to compare a novel suture fixation technique with the traditional tension band method using finite element analysis.
Methods: CT images of a healthy 35-year-old male were used to construct 3D patellar models.
Biomech Model Mechanobiol
December 2024
Department of Biomedical Engineering, Virginia Commonwealth University, 401 W. Main St., Richmond, VA, 23284, USA.
Embryonic development, wound healing, and organogenesis all require assembly of the extracellular matrix protein fibronectin (FN) into insoluble, viscoelastic fibrils. FN fibrils mediate cell migration, force generation, angiogenic sprouting, and collagen deposition. While the critical role of FN fibrils has long been appreciated, we still have an extremely poor understanding of their mechanical properties and how these mechanical properties facilitate cellular responses.
View Article and Find Full Text PDFCurr Opin Genet Dev
December 2024
Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664 Laboratoire Dynamique du Noyau, CNRS UMR168 Laboratoire Physique des Cellules et Cancer, 75005 Paris, France. Electronic address:
The physical organization and properties of chromatin within the interphase nucleus are intimately linked to a wide range of functional DNA-based processes. In this context, interphase chromatin mechanics - that is, how chromatin, physically, responds to forces - is gaining increasing attention. Recent methodological advances for probing the force-response of chromatin in cellulo open new avenues for research, as well as new questions.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.
Mitochondria are dynamic organelles with constantly changing morphologies. Despite recent reports indicating that mechanical cues modulate mitochondrial morphologies and functions, there is a lack of methods that can exclusively and precisely exert mechanical forces to and deform mitochondria in live cells. Therefore, how mitochondria sense and respond to mechanical forces remains largely elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!