The liver plays an important role in a severe thermal injury by modulating immune function, inflammatory processes and the acute phase response, which are an orchestrated attempt to restore homeostasis. Using high-density oligonucleotide arrays, we examined the gene expression profile in the livers of rats between 2 and 240 h after a 40% total body surface area (TBSA) burn. Alterations in gene expression unique to a thermal injury were identified. Approximately 39 genes out of 8700 genes on each array across all the time points showed a significant change in expression patterns. Real time reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analyses verified significant changes in early growth response-1 (Egr-1) messenger RNA (mRNA) and protein levels corresponding to the array data. Significant increases in serum levels of alpha-2-macroglobulin that correspond to changes in its mRNA levels were observed at 6 and 24 h after burn, p<0.05. The genomic pattern for liver in the hypermetabolic phase after the burn injury involves transcription factors, stress and inflammatory responses, cytoskeletal and extracellular matrix modifications, and regulation of cell proliferation and differentiation. During the initial phase of thermal injury gene expression profiles in the liver may provide some insight into how cellular protection mechanisms and systemic hypermetabolism are initiated and controlled. The genome wide changes observed may provide a rational therapeutic strategy to improve burn care.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2003.11.015DOI Listing

Publication Analysis

Top Keywords

gene expression
12
thermal injury
8
expression profiles
4
profiles livers
4
livers thermally
4
thermally injured
4
injured rats
4
rats liver
4
liver plays
4
plays role
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!