The identities of the ubiquitin-ligases active during myogenesis are largely unknown. Here we describe a RING-type E3 ligase complex specified by the adaptor protein, Ozz, a novel SOCS protein that is developmentally regulated and expressed exclusively in striated muscle. In mice, the absence of Ozz results in overt maturation defects of the sarcomeric apparatus. We identified beta-catenin as one of the target substrates of the Ozz-E3 in vivo. In the differentiating myofibers, Ozz-E3 regulates the levels of sarcolemma-associated beta-catenin by mediating its degradation via the proteasome. Expression of beta-catenin mutants that reduce the binding of Ozz to endogenous beta-catenin leads to Mb-beta-catenin accumulation and myofibrillogenesis defects similar to those observed in Ozz null myocytes. These findings reveal a novel mechanism of regulation of Mb-beta-catenin and the role of this pool of the protein in myofibrillogenesis, and implicate the Ozz-E3 ligase in the process of myofiber differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1534-5807(04)00020-6DOI Listing

Publication Analysis

Top Keywords

beta-catenin
5
ozz-e3
4
ozz-e3 muscle-specific
4
muscle-specific ubiquitin
4
ubiquitin ligase
4
ligase regulates
4
regulates beta-catenin
4
beta-catenin degradation
4
degradation myogenesis
4
myogenesis identities
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!