In previous studies of brain transplantation, the fate of the implanted glial cells has been investigated separately; that is, the interest has been focused either on the astroglia or on the oligodendroglia. However, the two populations of implanted glial cells may interact with each other, for example by secreting species-specific factors or by inducing reactions by the host. We have used two different models of brain transplantation: one that allows the identification of the implanted astrocytes, and another that allows the identification of the implanted oligodendroglia. The present model is a combination of both; it consists of the grafting of embryonic rabbit brain fragments into the brains of neonatal Shiverer mice. The myelin made by the implanted oligodendrocytes is identified by anti-myelin basic protein immunohistochemistry. The implanted astrocytes are identified by a monoclonal antibody that combines with rabbit but not with mouse glial fibrillary acidic protein. This study shows that although they use the same major routes of migration, both populations of glial cells tend to move differently. They demonstrate areas of common settlement but also areas where only one population of implanted glia is present. From the site of implantation in the dorsal striatum, the major routes of migration are the corpus callosum, the white matter fascicles in the striatum, and the internal capsule. After a delay of 6 weeks, no significant prevalence of one population of implanted glial cells over the other was observed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6575667PMC
http://dx.doi.org/10.1523/JNEUROSCI.12-08-03098.1992DOI Listing

Publication Analysis

Top Keywords

glial cells
16
implanted glial
12
brain transplantation
8
implanted
8
allows identification
8
identification implanted
8
implanted astrocytes
8
major routes
8
routes migration
8
population implanted
8

Similar Publications

In light of the increasing importance for measuring myelin ratios - the ratio of axon-to-fiber (axon + myelin) diameters in myelin internodes - to understand normal physiology, disease states, repair mechanisms and myelin plasticity, there is urgent need to minimize processing and statistical artifacts in current methodologies. Many contemporary studies fall prey to a variety of artifacts, reducing study outcome robustness and slowing development of novel therapeutics. Underlying causes stem from a lack of understanding of the myelin ratio, which has persisted more than a century.

View Article and Find Full Text PDF

Myelination is a key biological process wherein glial cells such as oligodendrocytes wrap myelin around neuronal axons, forming an insulative sheath that accelerates signal propagation down the axon. A major obstacle to understanding myelination is the challenge of visualizing and reproducibly quantifying this inherently three-dimensional process in vitro. To this end, we previously developed artificial axons (AAs), a biocompatible platform consisting of 3D-printed hydrogel-based axon mimics designed to more closely recapitulate the micrometer-scale diameter and sub-kilopascal mechanical stiffness of biological axons.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is a highly aggressive and malignant brain tumor originating from glial cells, characterized by high recurrence rates and poor patient prognosis. The heterogeneity and complex biology of GBM, coupled with the protective nature of the blood-brain barrier (BBB), significantly limit the efficacy of traditional therapies. The rapid development of nanoenzyme technology presents a promising therapeutic paradigm for the rational and targeted treatment of GBM.

View Article and Find Full Text PDF

Spinal cord injury (SCI) leads to acute tissue damage that disrupts the microenvironmental homeostasis of the spinal cord, inhibiting cell survival and function, and thereby undermining treatment efficacy. Traditional stem cell therapies have limited success in SCI, due to the difficulties in maintaining cell survival and inducing sustained differentiation into neural lineages. A new solution may arise from controlling the fate of stem cells by creating an appropriate mechanical microenvironment.

View Article and Find Full Text PDF

NOTCH3 Mutation Causes Glymphatic Impairment and Promotes Brain Senescence in CADASIL.

CNS Neurosci Ther

January 2025

Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.

Aims: The aim of this study is to investigate the role of glymphatic function of cerebral autosomal dominant arteriopathy, subcortical infarcts, and leukoencephalopathy (CADASIL), the most common monogenic small vessel disease caused by NOTCH3 mutation, and to explore potential therapeutic strategies to improve glymphatic function.

Methods: We assessed glymphatic influx and efflux function in CADASIL mouse models (Notch3) and correlated these findings with brain atrophy in CADASIL patients. We also investigated the underlying mechanisms of glymphatic impairment, focusing the expression of AQP4 in astrocytic endfeet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!