1. To evaluate the role of ketone bodies in diabetes-induced changes in hepatic cytochrome P450 composition, rats were treated with acetone, 3-hydroxybutyrate or 1,3-butanediol. 2. Treatment with acetone enhanced the rat hepatic O-dealkylations of ethoxyresorufin and methoxyresorufin, and the hydroxylation of p-nitrophenol, but had no effect on lauric acid hydroxylation and ethylmorphine N-demethylation. Neither 3-hydroxybutyrate nor 1,3-butanediol modulated the metabolism of the above substrates. 3. Immunoblot analysis of hepatic microsomal proteins revealed that treatment with acetone increased the apoprotein levels of P4501A2, P4502B1/2 and P4502E1. 4. It is concluded that acetone is responsible, at least partly, for the diabetes-induced increase in hepatic microsomal P4501A2, P4502B1/2 and P4502E1 proteins but does not mediate the increases in the P4503A1 and P4504A1 proteins. On the basis of work from our own and other laboratories a mechanism for the diabetes-induced changes in hepatic cytochrome P450 proteins is proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/00498259209056694 | DOI Listing |
Life Sci
January 2025
Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1(st) Rd., Sanmin Dist., Kaohsiung City 807378, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, No. 100, Shiquan 1(st) Rd., Sanmin Dist., Kaohsiung 807378, Taiwan; National Pingtung University of Science and Technology, Department of Biological Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 912301, Taiwan. Electronic address:
Pulmonary disorders are exacerbated by high blood sugar, leading to a disordered immune defense and increased susceptibility to infection. Type 2 diabetes mellitus (T2D) is characterized by insulin resistance and inadequate insulin production. Mechanisms leading to pulmonary alternation due to T2D are not clear.
View Article and Find Full Text PDFInt J Fertil Steril
January 2025
Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
Background: Diabetes mellitus (DM), one of the most pervasive and enduring metabolic diseases, has been demonstrated to adversely impact male fertility. Conversely, both exercise training and Chrysin have been identified as potential interventions capable of mitigating the deleterious effects of diabetes on spermatogenesis. Thus, the current study aims to explore the individual and combined influences of Chrysin supplementation and running exercise on oxidative stress and germ cell apoptosis in the testicular tissue of diabetic adult rats.
View Article and Find Full Text PDFInt J Clin Exp Pathol
December 2024
Department of Neurology, Huanggang Central Hospital of Yangtze University Huanggang 438000, Hubei, China.
Objectives: Sulforaphane (SFN), an isothiocyanate in cruciferous plants, has been reported to be effective in treating central nervous system diseases. However, how SFN protects the central nervous system needs further study. The aim of this study was to investigate the neuroprotective effect of SFN and its possible mechanism of action.
View Article and Find Full Text PDFCells
December 2024
Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA.
Diabetic retinopathy, a major cause of vision loss, is characterized by neurovascular changes in the retina. The lack of effective treatments to preserve vision in diabetic patients remains a significant challenge. A previous study from our laboratory demonstrated that 12-week treatment with MDL 72527, a pharmacological inhibitor of spermine oxidase (SMOX, a critical regulator of polyamine metabolism), reduced neurodegeneration in diabetic mice.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Institute of Urology, Beijing Municipal Health Commission, Beijing 100050, China. Electronic address:
We previously established an effective method to ameliorate erectile dysfunction (ED) using intracavernous injection (ICI) of mesenchymal stem cell (MSC) microspheres. However, the expression of a key neurotrophic factor, brain-derived neurotrophic factor (BDNF), was low in both MSCs and MSC microspheres, restricting the associated neural repair. Based on the hypoxia and oxidative stress microenvironments within cell spheroids and lesion areas, BDNF-expressing nanocomplexes that are dual-responsive to hypoxia and reactive oxygen species were designed to modify MSCs, achieving high BDNF expression in MSC spheroids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!