Brush border membrane proteins in experimental Fanconi's syndrome induced by 4-pentenoate and maleate.

Can J Physiol Pharmacol

Départements de chimie et biochimie, Université du Québec, Montréal, Canada.

Published: September 1992

Fanconi's syndrome was investigated using brush border membrane (BBM) vesicles isolated from dog kidney. Sodium-dependent uptake of glucose, phosphate, and amino acids and protein phosphorylation were studied in BBM isolated from normal and from 4-pentenoate- and maleate-treated animals. The time course of D-glucose and phosphate uptake, in BBM vesicles, remained unchanged, indicating that both treatments had no effect on carrier properties, and that permeabilities to these substrates and to sodium were not modified. Furthermore, sodium-dependent transport of alanine, phenylalanine, proline, glycine, and glutamate into vesicles remained unaltered by either treatment. 4-Pentenoate treatment caused modifications of the phosphorylation pattern of BBM proteins: the phosphorylation of two proteins (61 and 74 kDa) was increased and that of two others (48 and 53 kDa) was decreased. Maleate treatment caused an increase in the phosphorylation for the same 61-kDa protein, which was also affected by 4-pentenoate treatment, suggesting that phosphorylation of this protein could be related to a mechanism involved in both 4-pentenoate- and maleate-induced Fanconi's syndrome. These changes were also observed in the presence of sodium fluoride and L-bromotetramisole, indicating that the modification of phosphorylation was not due to a difference in phosphatase activities. These results suggest that Fanconi's syndrome induced by 4-pentenoate or maleate is not caused by an inhibition of BBM Na(+)-dependent transport systems. Our results also suggest that protein phosphorylation may play an important role in the molecular defect involved in Fanconi's syndrome.

Download full-text PDF

Source
http://dx.doi.org/10.1139/y92-173DOI Listing

Publication Analysis

Top Keywords

fanconi's syndrome
20
brush border
8
border membrane
8
syndrome induced
8
induced 4-pentenoate
8
4-pentenoate maleate
8
bbm vesicles
8
protein phosphorylation
8
vesicles remained
8
4-pentenoate treatment
8

Similar Publications

Background: Limited research exists regarding the genetic profile, clinical characteristics, and outcomes of refractory rickets in children from India.

Methods: Patients with refractory rickets aged ≤ 18 years were enrolled. Data regarding clinical features, etiology, genotype-phenotype correlation, and estimated glomerular filtration rate (eGFR) were recorded.

View Article and Find Full Text PDF

Hereditary tyrosinemia type 1 (HT-1) is an inborn error of metabolism caused by a defect in tyrosine (tyr) degradation. This defect results in the accumulation of succinylacetone (SA), causing liver failure with a high risk of hepatocarcinoma and kidney injury, leading in turn to Fanconi syndrome with urine loss of phosphate and secondary hypophosphatemic rickets (HR). HT-1 diagnosis is usually made in infants with acute or chronic liver failure or by neonatal screening programs.

View Article and Find Full Text PDF

Gene therapy (GT) as a groundbreaking approach holds promise for treating many diseases including immune deficiencies and blood disorders. GT can benefit patients suffering from these diseases, especially those without matched donors or who are at risk after hematopoietic stem cell transplantation (HSCT). Due to all the advances in the field of GT, its main challenge is still gene delivery.

View Article and Find Full Text PDF

Fanconi anemia (FA) is a rare genetic disorder that affects multiple systems in the body and is the most prevalent congenital syndrome, leading to bone marrow failure. Twenty-two genes have been identified as contributors to the disease. Significant advancements have been made in the past 2 decades in understanding the genetic and pathophysiological processes involved.

View Article and Find Full Text PDF

Los olvidados: Non-BRCA variants associated with Hereditary breast cancer in Mexican population.

Breast Cancer Res

January 2025

Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, 66451, Monterrey, Nuevo León, México.

Background: Hereditary predisposition to breast and ovarian cancer syndrome (HBOC) is a pathological condition with increased cancer risk, including breast (BC), ovarian cancer (OC), and others. HBOC pathogenesis is caused mainly by germline pathogenic variants (GPV) in BRCA1 and BRCA2 genes. However, other relevant genes are related to this syndrome diagnosis, prognosis, and treatment, including TP53, PALB2, CHEK2, ATM, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!