We used the CA-77 cell, a murine C-cell line derived from a medullary thyroid carcinoma, to study the effects of glucocorticoids, calcium, and vitamin D metabolites on calcitonin (CT) gene expression. Total RNA was isolated, and CT and CT gene-related peptide (CGRP) mRNAs were measured by Northern hybridizations using specific probes. A control mRNA probe (cyclophilin) was used to quantitate the specificity of the changes in CT and CGRP mRNAs. The CA-77 C cell line cultured in basal conditions with a medium deprived of fetal calf serum, but was supplemented by insulin, expressed mainly the CGRP mRNA. Dexamethasone was found to increase both CT and CGRP mRNAs in a time- and dose-dependent way without changing the alternative splicing. A slight but significant increase in the steady-state CT mRNA level was found 3 days after addition of 10(-10) M dexamethasone; the same dose slightly decreased the CGRP mRNA level; concentrations of dexamethasone > or = 10(-9) M elevated both mRNAs. A twelve-fold increase for CT mRNA, and an eightfold increase in CGRP mRNA occurred 3 days after administration of 10(-6) M dexamethasone. Kinetic data revealed inductions of both mRNAs 24 hours after exposure to 10(-7) M dexamethasone, and highest CT and CGRP mRNAs levels were observed after 72 hours of treatment. Calcium from 1-4 mM in short-term (1 hour and 4 hour) or long-term stimulations (1 day and 4 days), with or without dexamethasone cotreatment was ineffective. CT and CGRP mRNAs levels were both half-reduced 48 hours after addition of 10(-7) M 1,25-dihydroxycholecalciferol; this effect was transient, as it disappeared 2 days later.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/thy.1992.2.361 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!