[Use of arterenol as supplement in local anesthesia].

Wien Klin Wochenschr

Published: October 1951

Download full-text PDF

Source

Publication Analysis

Top Keywords

[use arterenol
4
arterenol supplement
4
supplement local
4
local anesthesia]
4
[use
1
supplement
1
local
1
anesthesia]
1

Similar Publications

A Supramolecular Fluorescent Chemosensor Enabling Specific and Rapid Quantification of Norepinephrine Dynamics.

J Am Chem Soc

January 2025

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China.

Host-guest supramolecular fluorescence probes have garnered significant attention in the detection and sensing of bioactive molecules due to their functionalization potential, adjustable physical properties, and high specificity. However, such probes that reliably, rapidly, and specifically measure neurotransmitter dynamics at the cellular and in vivo level have yet to be reported. Herein, we present a supramolecular fluorescent chemosensor designed for norepinephrine (NE) detection, showing an exceptional response and specificity through host-guest complexation.

View Article and Find Full Text PDF

Abolition of Aorticorenal Ganglia Pacing Responses Improves Denervation Efficacy.

Hypertension

January 2025

Cardiology Department (P.B., X.L., V.T.T., M.A.B., A.V., E.Y., D.M.N., U.P., J.L., S.P.T., P.C.Q.), Westmead Hospital, Sydney, Australia.

Background: Transcatheter renal denervation (RDN) remains inconsistent despite developments in ablation technologies, due to the lack of an intraprocedural physiological end point.

Objective: To identify whether aorticorenal ganglion (ARG) guided RDN using microwave (MW) catheter leads to more consistent denervation outcomes compared with empirical MW ablation.

Methods: Pigs underwent sham procedure (n=8) or bilateral RDN using an in-house built open-irrigated MW catheter.

View Article and Find Full Text PDF

Background: More than 1 million people in the United States meet the criteria for cocaine use disorder (CUD), and over 19,000 people died from cocaine-related overdoses in 2020, but there are currently no FDA-approved medications for the treatment of CUD. Bupropion is an antidepressant currently prescribed to treat depression and nicotine addiction that acts by inhibiting norepinephrine and dopamine transporters.

Methods: In this study, we tested the effect of several doses of systemic bupropion on cocaine self-administration in male and female Wistar rats.

View Article and Find Full Text PDF

When retrieved, seemingly stable memories can become sensitive to significant events, such as acute stress. The mechanisms underlying these memory dynamics remain poorly understood. Here, we show that noradrenergic stimulation after memory retrieval impairs subsequent remembering, depending on hippocampal and cortical signals emerging during retrieval.

View Article and Find Full Text PDF

Regenerating Locus Coeruleus-Norepinephrine (LC-NE) Function: A Novel Approach for Neurodegenerative Diseases.

Cell Prolif

January 2025

State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.

Pathological changes in the locus coeruleus-norepinephrine (LC-NE) neurons, the major source of norepinephrine (NE, also known as noradrenaline) in the brain, are evident during the early stages of neurodegenerative diseases (ND). Research on both human and animal models have highlighted the therapeutic potential of targeting the LC-NE system to mitigate the progression of ND and alleviate associated psychiatric symptoms. However, the early and widespread degeneration of the LC-NE system presents a significant challenge for direct intervention in ND.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!