A simple method for measuring absolute concentrations of 31P metabolites in rat liver using an external reference is described. It neutralizes systematic errors due to conductive losses by calibration of the matching capacitor and selects liver signals via an electrically driven, surface spoiling magnetic field gradient. The technique avoids the chemical shift problems associated with linear field gradient localization methods at 4.7 T and allows combination with the double standard method for absolute metabolite concentration determination. Application of the method to the in vivo measurement of the absolute concentrations of ATP and P(i) in eight rat livers yields results that are in good agreement with literature values. Absolute phosphomonoester concentrations were also obtained, but no literature data were available.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/nbm.1940050604 | DOI Listing |
J Mol Model
January 2025
Department of Chemistry, Federal Institute of Education, Science and Technology of Espírito Santo, Av. Min. Salgado Filho, Vila Velha, 29106-010, Espírito Santo, Brazil.
Context: This study presents quantum chemical analysis of 14 distinct carbon-based nanostructures (CBN), ranging from simple molecules, like benzene, to more complex structures, such as coronene, which serves as an exemplary graphene-like model. The investigation focuses on elucidating the relationships between molecular orbital (MO) energies, the energy band gaps, electron occupation numbers (eON), electronic conduction, and the compound topologies, seeking to find the one that approaches most of a graphene-like structure for in silico studies. Through detailed examination of molecular properties including chemical hardness and chemical potential, we demonstrate that the electronic exchange between orbitals is directly influenced by the structural topology of the carbon-based nanostructures, as the electron occupation numbers and the molecular orbital energies.
View Article and Find Full Text PDFParasitol Res
January 2025
Applied Zoology and Animal Conservation Group, University of the Balearic Islands (ZAP-UIB), Palma, Spain.
Biting midges of genus Leptoconops Skuse 1889 are small blood-feeding insects recognized as highly irritating diurnal pests in certain regions around the globe. In Europe, their presence is poorly documented, except in France and Italy. Following reports of human discomfort in a tourist area of Menorca, Balearic Islands (Spain), a small-scale study was conducted to identify the biting species and assess their preferred biting sites using a human-landing assay along a habitat gradient in a coastal dune area.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute for Theoretical Physics, Georg-August University of Göttingen, 37077 Göttingen, Germany.
A Single-Chain-in-Mean-Field (SCMF) algorithm was introduced to study block copolymer electrolytes in nonequilibrium conditions. This method self-consistently combines a particle-based description of the polymer with a generalized diffusion equation for the ionic fluxes, thus exploiting the time scale separation between fast ion motion and the slow polymer relaxation and self-assembly. We apply this computational method to study ion fluxes in electrochemical cells containing poly(ethylene oxide)-polystyrene (PEO-PS) block copolymers with added lithium salt.
View Article and Find Full Text PDFEur J Intern Med
January 2025
Istituti Clinici Scientifici Maugeri, IRCCS, Institute of Bari, Bari, Italy.
Background: Assessing the relative performance of machine learning (ML) methods and conventional statistical methods in predicting prognosis in heart failure (HF) still remains a challenging research field.
Methods: The primary outcome was three-year mortality. The following 5 machine learning approaches were used for modeling: Random Forest (RF), Gradient Boosting, Extreme Gradient Boosting (XGBoost), Support Vector Machine, and Multilayer perceptron.
J Hazard Mater
January 2025
BP Australia Pty Ltd, Melbourne, Victoria 3000, Australia.
Natural Source Zone Deletion (NSZD) is a viable long-term management option for sites impacted by petroleum hydrocarbon fuels. NSZD rate estimation methods for petroleum mass losses often use soil gas gradients of oxygen, carbon dioxide, methane or vapour concentrations through the vadose zone. Seeking greater efficiencies, we investigated if existing short-screened wells are reliable for representative sampling of soil gases in a vadose zone undergoing NSZD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!