[Starch syrup in infant nutrition].

Lijec Vjesn

Published: February 2004

Download full-text PDF

Source

Publication Analysis

Top Keywords

[starch syrup
4
syrup infant
4
infant nutrition]
4
[starch
1
infant
1
nutrition]
1

Similar Publications

Enhanced pullulanase production through expression system optimization and biofilm-immobilized fermentation strategies.

Int J Biol Macromol

January 2025

National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Soochow University, Suzhou, Jiangsu 215123, PR China.

Pullulanase (PUL) plays a crucial role in breaking down α-1,6-glycosidic bonds in starch, a key process in starch processing and conversion. Based on PulB with high enzymatic activity, the expression of PUL in Bacillus subtilis was enhanced by plasmid screening, double promoter optimization, and signal peptide engineering. Furthermore, we innovatively employed a mussel foot protein to enhance the cell adhesion to carriers and utilized biofilm-based cell immobilization technology to optimize the fermentation process and stimulate biofilm formation.

View Article and Find Full Text PDF
Article Synopsis
  • This review highlights the current and potential benefits of sorghum ingredients, such as syrup, grain, and flour, for human consumption, emphasizing their nutritional value and functional uses.
  • Sorghum syrup is noted for its unique flavor, lower glycemic index, and higher antioxidant content compared to common sweeteners, with promising applications in beverages like coffee.
  • The review also discusses sorghum's increasing use in gluten-free products and sustainable alternatives, positioning it as a versatile ingredient amid growing concerns about climate change and food quality.
View Article and Find Full Text PDF

Precision Activity-Based α-Amylase Probes for Dissection and Annotation of Linear and Branched-Chain Starch-Degrading Enzymes.

Angew Chem Int Ed Engl

November 2024

York Structural Biology Laboratory, Department of Chemistry, University of York, York, North Yorkshire, YO10 5DD, UK.

α-Amylases are the workhorse enzymes of starch degradation. They are central to human health, including as targets for anti-diabetic compounds, but are also the key enzymes in the industrial processing of starch for biofuels, corn syrups, brewing and detergents. Dissection of the activity, specificity and stability of α-amylases is crucial to understanding their biology and allowing their exploitation.

View Article and Find Full Text PDF

Characterization of a salt-tolerated exo-fructanase from Microbacterium sp. XL1 and its application for high fructose syrup preparation from inulin.

Int J Biol Macromol

December 2024

Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China; Jiangsu Institute of Marine Resources Development, 59 Cangwu Road, Haizhou, Lianyungang 222005, China.

Article Synopsis
  • Exo-fructanase enzymes break down fructans like levan and inulin, producing fructose, and this study focuses on a newly identified enzyme, Mle3A, from Microbacterium sp. XL1.
  • Mle3A has a unique structure with several functional domains and shows optimal activity at temperatures between 50-55 °C and a pH of 5.5, effectively hydrolyzing various sugars including inulin.
  • The enzyme's activity is significantly boosted by certain metal ions, particularly manganese, and it can efficiently convert inulin into high fructose syrup, making it a promising tool for producing valuable chemicals from inulin biomass.
View Article and Find Full Text PDF

Maltose gradient-induced biosensor-based high-throughput screening for directed evolution of maltogenic amylase from Bacillus stearothermophilus.

Int J Biol Macromol

November 2024

Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China. Electronic address:

Maltogenic amylase is a starch-hydrolyzing enzyme commonly used in bread baking and high-concentration maltose syrup production. However, low catalytic activity limits its industrial application. Improving catalytic activity based on molecular modification and directed evolution requires a High-Throughput Screening (HTS) method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!