Download full-text PDF |
Source |
---|
Sci Rep
January 2025
Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), 01069, Dresden, Germany.
Template-assisted colloidal self-assembly has gained significant attention due to its flexibility and versatility. By precisely controlling the shape of the template, it is possible to achieve custom-designed nanoparticle assemblies. However, a major challenge remains in fabricating these templates over large areas at a low cost.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, Guangxi, China. Electronic address:
Aptamers, a kind of short nucleotide sequences with high specificity and affinity with targets, have attracted extensive attention in recent years. Molecular docking method (MDM) is the most common method to explore the binding mode and recognition mechanism of aptamers and small molecules, which generally use the target to dock with the highest scoring tertiary structural model of the aptamer, and the highest scoring result is used as the predicted model. However, this prediction results may miss out the true interaction pattern due to the fact that aptamers are not completely rigid and the natural aptamers conformations are not in a single state.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States.
We synthesized rigid, macromolecular brushes with well-defined and quantized brush lengths on a gold nanoparticle substrate by using a macromolecular "grafting from" approach. The macromonomers used in these brushes were thiol- and maleimide-functionalized peptide coiled coil "bundlemers" that fold into discrete 4 nm × 2 nm (length × diameter) cylindrical nanoparticles. With each added peptide macromonomer layer, brush thickness increased by approximately the length of a single bundlemer nanoparticle.
View Article and Find Full Text PDFDiscov Nano
January 2025
Nuclear and Energy Research Institute, IPEN, CNEN/SP, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, CEP05508-000, Brazil.
Gold nanoparticles are widely used in biomedical applications due to their unique properties. However, traditional synthesis methods generate contaminants that cause cytotoxicity and compromise the biocompatibility of the nanomaterials. Therefore, green synthesis methods are essential to produce pure and biocompatible nanoparticles, ensuring their effectiveness in biomedical applications.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
Functional gold nanoparticles have emerged as a cornerstone in targeted drug delivery, imaging, and biosensing. Their stability, distribution, and overall performance in biological systems are largely determined by their interactions with molecules in biological fluids as well as the biomolecular layers they acquire in complex environments. However, real-time tracking of how biomolecules attach to colloidal nanoparticles, a critical aspect for optimizing nanoparticle function, has proven to be experimentally challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!