The effect of arachidonic acid on the M current of NG108-15 neuroblastoma x glioma hybrid cells.

Pflugers Arch

I. Physiologisches Institut, Universität des Saarlandes, Homburg/Saar, Federal Republic of Germany.

Published: November 1992

The M current, IM, a voltage-dependent non-inactivating K+ current, was recorded in NG108-15 neuroblastoma x glioma hybrid cells, using the whole-cell mode of the patch-clamp technique. We studied the effect of arachidonic acid, other fatty acids and inhibitors of the arachidonic acid metabolism. In relatively high concentrations (25-50 microM) arachidonic acid first increased and later decreased the current, Ih, which holds the membrane potential at -30 mV and mainly flows through open M channels. It shifted the midpoint potential, Vo, of the relation between M conductance, gM, and membrane potential, V, to more negative values and decreased the maximum conductance gM and the time constant tau M. In smaller concentrations (5-10 microM) arachidonic acid merely decreased Ih and gM with little effect on Vo and tau M. Eicosatetraynoic acid and docosahexaenoic acid acted similarly to arachidonic acid whereas stearic acid had no effect. Of the three enzyme inhibitors studied, nordihydroguaiaretic acid acted similarly to arachidonic acid. i.e. caused a biphasic change in Ih. Indomethacin and quinacrine caused, respectively, a pure increase and a pure decrease of Ih and gM. Possible explanations are build-up of internally produced arachidonic acid, depletion of eicosanoid products or an inhibitory effect unrelated to arachidonic acid metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00370411DOI Listing

Publication Analysis

Top Keywords

arachidonic acid
36
acid
12
arachidonic
9
ng108-15 neuroblastoma
8
neuroblastoma glioma
8
glioma hybrid
8
hybrid cells
8
acid metabolism
8
microm arachidonic
8
membrane potential
8

Similar Publications

Background: Epoxyeicosatrienoic acids (EETs) are closely associated with lipoprotein metabolism, and changes in lipid profiles potentially affect their levels and functions. Given the alterations in lipid metabolism after cholecystectomy, this study aimed to investigate the levels of four EET regioisomers (free and esterified) and lipid profiles in patients with cholelithiasis after laparoscopic cholecystectomy (LC) and explore correlations between these parameters.

Methods: This prospective study involved 40 patients with symptomatic cholelithiasis who underwent LC.

View Article and Find Full Text PDF

Introduction: Diarrhea is a prevalent disease among calves, which significantly hinders their growth and development, thereby impacting farm productivity and revenue. This study aimed to investigate the impact of diarrhea on calf growth.

Methods: Holstein male calves with similar birth weight (39.

View Article and Find Full Text PDF

Coelomic fluid of earthworms is a valuable source of novel bioactive compounds with therapeutic applications. To gain insight into the bioactive compounds in the coelomic fluid, this study used Perionyx excavatus, a tropical earthworm distinguished for its remarkable ability for regeneration. This study aimed to identify fluorescent bioactive compounds in the coelomic fluid of P.

View Article and Find Full Text PDF

Introduction: This study examines the effects of steam-flaked corn starter on pre-weaned Simmental calves' growth, immunity, and metabolism. Despite benefits shown in adult cattle, research on calves is limited. The goal is to optimize calf feeding for better growth, health, and nutrient use.

View Article and Find Full Text PDF

An elevated level of saturated fatty acids (SFAs) can cause non-alcoholic fatty liver disease (NAFLD). While n-3 polyunsaturated fatty acids (PUFAs) were shown to improve NAFLD, the effects of n-6 PUFAs in the liver have not been fully elucidated. We examined the association between NAFLD and n-6 PUFAs, particularly dihomo-γ-linolenic acid (DGLA), in patients with type 2 diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!