Objective: The efficient uptake of dying cells by phagocytes is essential to the avoidance of chronic inflammation. Some human autoimmune responses are thought to be driven by autoantigens from apoptotic or necrotic cells. We analyzed the role of C1q and DNase I in the disposal of necrotic cell-derived chromatin because deficiencies in these serum factors predispose to the development of systemic autoimmune disorders, such as systemic lupus erythematosus.

Methods: Human necrotic peripheral blood lymphocytes were incubated in cell culture medium supplemented with various sera or serum components. Chromatin degradation was monitored by measuring the residual DNA content by flow cytometry. The uptake of necrotic cell-derived nuclei was analyzed by in vitro phagocytosis assays.

Results: Reconstitution of C1q-depleted serum with C1q strongly increased its ability to degrade necrotic cell-derived chromatin. Although C1q itself displayed no DNase activity, it strongly augmented the activity of serum DNase I. Whereas an excess of recombinant DNase I degraded chromatin in the absence of C1q, efficient uptake of the predigested material by monocyte-derived phagocytes required the presence of C1q. These data show that C1q and DNase I cooperate in the degradation of chromatin from necrotic cells. Furthermore, C1q was found to be necessary for effective uptake of degraded chromatin by monocyte-derived phagocytes.

Conclusion: C1q or DNase I deficiencies may precipitate autoimmunity in humans by a mechanism similar to that of other molecules that are involved in the safe, efficient, and rapid disposal of dying cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/art.20034DOI Listing

Publication Analysis

Top Keywords

c1q dnase
16
necrotic cell-derived
16
cell-derived chromatin
12
efficient uptake
8
dying cells
8
necrotic cells
8
c1q
8
degraded chromatin
8
dnase
7
necrotic
7

Similar Publications

Intestinal homeostasis is maintained by the response of gut-associated lymphoid tissue to bacteria transported across the follicle associated epithelium into the subepithelial dome. The initial response to antigens and how bacteria are handled is incompletely understood. By iterative application of spatial transcriptomics and multiplexed single-cell technologies, we identify that the double negative 2 subset of B cells, previously associated with autoimmune diseases, is present in the subepithelial dome in health.

View Article and Find Full Text PDF
Article Synopsis
  • Several antibody fragments and antibody fragment-fusion proteins have been approved for therapeutics, but full-length monoclonal or bispecific antibodies produced in this system are not yet approved.
  • Significant advancements have been made in expressing these full-length antibodies in different cellular environments, demonstrating their effectiveness and stability compared to traditional mammalian cell-produced versions.
  • Recent research highlights the engineering of aglycosylated therapeutic antibodies for various medical uses, including autoimmune diseases and cancer therapies, emphasizing their potential in clinical applications.
View Article and Find Full Text PDF

Dysregulation in neutrophil extracellular trap (NET) formation and degradation may play a role in the pathogenesis and severity of COVID-19; however, its role in the pediatric manifestations of this disease, including multisystem inflammatory syndrome in children (MIS-C) and chilblain-like lesions (CLLs), otherwise known as "COVID toes," remains unclear. Studying multinational cohorts, we found that, in CLLs, NETs were significantly increased in serum and skin. There was geographic variability in the prevalence of increased NETs in MIS-C, in association with disease severity.

View Article and Find Full Text PDF

Multicenter analysis of neutrophil extracellular trap dysregulation in adult and pediatric COVID-19.

medRxiv

March 2022

Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA.

Unlabelled: Dysregulation in neutrophil extracellular trap (NET) formation and degradation may play a role in the pathogenesis and severity of COVID-19; however, its role in the pediatric manifestations of this disease including MIS-C and chilblain-like lesions (CLL), otherwise known as "COVID toes", remains unclear. Studying multinational cohorts, we found that, in CLL, NETs were significantly increased in serum and skin. There was geographic variability in the prevalence of increased NETs in MIS-C, in association with disease severity.

View Article and Find Full Text PDF

The formation of neutrophil extracellular traps (NETs) is a strategy utilized by neutrophils for capturing infective agents. Extracellular traps consist in a physical net made of DNA and intracellular proteins externalized from neutrophils, where bacteria and viruses are entrapped and killed by proteolysis. A complex series of events contributes to achieving NET formation: signaling from infectious triggers comes first, followed by decondensation of chromatin and extrusion of the nucleosome components (DNA, histones) from the nucleus and, after cell membrane breakdown, outside the cell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!