Download full-text PDF

Source
http://dx.doi.org/10.1023/B:JNMR.0000015371.72584.04DOI Listing

Publication Analysis

Top Keywords

assignment 13c
4
13c 15n
4
15n resonances
4
resonances death
4
death domain
4
domain tradd
4
assignment
1
15n
1
resonances
1
death
1

Similar Publications

2,4-Dichlorophenoxyacetic Acid in the Gas and Crystal Phases and Its Intercalation in Montmorillonite-An Experimental and Theoretical Study.

Molecules

January 2025

Instituto Andaluz de Ciencias de la Tierra (IACT-CSIC), Consejo Superior de Investigaciones Científicas, Av. de las Palmeras 4, 18100 Armilla, Granada, Spain.

Many properties of 2,4-dichlorophenoxyacetic acid (2,4-D) depend on its molecular environment, such as whether it is an isolated molecule, a dimer, or in a crystalline state. The molecular geometry, conformational analysis, and vibrational spectrum of 2,4-D were theoretically calculated using Density Functional Theory (DFT) methods. A new slightly more stable conformer was found, which is different to those previously reported.

View Article and Find Full Text PDF

Evaluation of TOCSY mixing for sensitivity-enhancement in solid-state NMR and application of 4D experiments for side-chain assignments of the full-length 30 kDa membrane protein GlpG.

J Biomol NMR

January 2025

Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert- Rössle-Straße 10, 13125, Berlin, Germany.

Chemical shift assignments of large membrane proteins by solid-state NMR experiments are challenging. Recent advancements in sensitivity-enhanced pulse sequences, have made it feasible to acquire H-detected 4D spectra of these challenging protein samples within reasonable timeframes. However, obtaining unambiguous assignments remains difficult without access to side-chain chemical shifts.

View Article and Find Full Text PDF

A total chemical synthesis of spacer-armed Forssman pentasaccharide is reported. The choice of the 2(donor) + 3(acceptor) block scheme, the optimal combination of a limited number of simple protecting groups and the sequence of deprotection steps allowed to achieve the high yield and stereoselectivity of glycosylation and to avoid losses during deprotection. The target pentasaccharide was obtained in a 10-mg scale.

View Article and Find Full Text PDF

Assignment of the N-terminal domain of mouse cGAS.

Biomol NMR Assign

January 2025

Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.

Cyclic GMP-AMP synthase (cGAS) is a DNA-sensing enzyme that is a member of the nucleotidyltransferase (NTase) family and functions as a DNA sensor. The protein is comprised of a catalytic NTase core domain and an unstructured hypervariable N-terminal domain (NTD) that was reported to increase protein activity by providing an additional DNA-binding surface. We report nearly complete H, N, and C backbone chemical-shift assignments of mouse cGAS NTD (residues 5-146), obtained with a set of 3D and 4D solution NMR experiments.

View Article and Find Full Text PDF

Solution NMR studies of large systems are hampered by rapid signal decay. We hereby introduce ROCSY (relaxation-optimized total correlation spectroscopy), which maximizes transfer efficiency across J-coupling-connected spin networks by minimizing the amount of time magnetization spends in the transverse plane. Hard pulses are substituted into the Clean-CITY TOCSY pulse element first developed by Ernst and co-workers, allowing for longer delays in which magnetization is aligned along the z-axis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!