"Guessing it right," John A. Simpson, and myasthenia gravis: the role of analogy in science.

Neurology

Department of History (History of Science), University of Florida, Gainesville, USA.

Published: February 2004

In 1960, John A. Simpson hypothesized that myasthenia gravis "is an 'auto-immune' response of muscle in which an antibody to end-plate protein may be formed." Simpson's speculation was subsequently shown to be correct. A review of Simpson's hypothesis from a historical perspective illustrates the role of analogy in science.

Download full-text PDF

Source
http://dx.doi.org/10.1212/01.wnl.0000106936.27018.ecDOI Listing

Publication Analysis

Top Keywords

john simpson
8
myasthenia gravis
8
role analogy
8
analogy science
8
"guessing right"
4
right" john
4
simpson myasthenia
4
gravis role
4
science 1960
4
1960 john
4

Similar Publications

Acute maternal hyperoxygenation to predict hypoxia and need for emergency intervention in fetuses with transposition of the great arteries: a pilot study.

J Am Soc Echocardiogr

January 2025

Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's & St Thomas' NHS Trust, Westminster Bridge Road, London SE1 7EH, UK; School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.

Background: Newborns with transposition of the great arteries (TGA) are at risk of severe hypoxia from inadequate atrial mixing, closure of the arterial duct and/or pulmonary hypertension (PPHN). Acute maternal hyperoxygenation (AMH) might assist in identifying at-risk fetuses. We report pulmonary vasoreactivity to AMH in TGA fetuses and its relationship to early postnatal hypoxia and requirement for emergency balloon atrial septostomy (e-BAS).

View Article and Find Full Text PDF

Assessing Lung Ventilation and Bronchodilator Response in Asthma and Chronic Obstructive Pulmonary Disease with F MRI.

Radiology

December 2024

From the Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (B.J.P., M.A.N., C.W.H., A.J.S., P.E.T.); Newcastle Magnetic Resonance Centre, Health Innovation Neighbourhood, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom (B.J.P., M.A.N., C.W.H., P.E.T.); Pulmonary, Lung and Respiratory Imaging Sheffield, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom (A.M.M., J.M.W.); Department of Respiratory Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom (I.F.); Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom (R.A.L.); Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (H.F.F., J.N.S.M.); and Insigneo Institute, University of Sheffield, Sheffield, United Kingdom (J.M.W.).

Background Pulmonary function tests are central to diagnosis and monitoring of respiratory diseases but do not provide information on regional lung function heterogeneity. Fluorine 19 (F) MRI of inhaled perfluoropropane permits quantitative and spatially localized assessment of pulmonary ventilation properties without tracer gas hyperpolarization. Purpose To assess regional lung ventilation properties using F MRI of inhaled perfluoropropane in participants with asthma, participants with chronic obstructive pulmonary disease (COPD), and healthy participants, including quantitative evaluation of bronchodilator response in participants with respiratory disease.

View Article and Find Full Text PDF

Virtual Reality for Preprocedure Planning of Covered Stent Correction of Superior Sinus Venosus Atrial Septal Defects.

Circ Cardiovasc Interv

December 2024

School of Biomedical Engineering and Imaging Sciences, King's College London, United Kingdom (N.S., S.D., G.W., K.P., J.A.S., J.M.S.).

Background: Covered stent correction (CSC) of a superior sinus venosus atrial septal defect is an alternative to surgery in selected patients, but anatomic variation means that assessment for CSC requires a 3-dimensional anatomic understanding. Heart VR is a virtual reality (VR) system that rapidly displays and renders multimodality imaging without prior image segmentation. The aim of this study was to evaluate the performance of the Heart VR system to assess patient suitability for CSC.

View Article and Find Full Text PDF

Background: Altered structural brain development has been identified in fetuses with congenital heart disease (CHD), suggesting that the neurodevelopmental impairment observed later in life might originate in utero. There are many interacting factors that may perturb neurodevelopment during the fetal period and manifest as structural brain alterations, such as altered cerebral substrate delivery and aberrant fetal hemodynamics.

Methods And Results: We extracted structural covariance networks from the log Jacobian determinants of 435 in utero T2 weighted image magnetic resonance imaging scans, (n=67 controls, 368 with CHD) acquired during the third trimester.

View Article and Find Full Text PDF

Individualized cortical gyrification in neonates with congenital heart disease.

Brain Commun

October 2024

Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.

Congenital heart disease is associated with impaired early brain development and adverse neurodevelopmental outcomes. This study investigated how individualized measures of preoperative cortical gyrification index differ in 142 infants with congenital heart disease, using a normative modelling approach with reference data from 320 typically developing infants. Gyrification index -scores for the whole brain and six major cortical areas were generated using two different normative models: one accounting for post-menstrual age at scan, post-natal age at scan and sex, and another additionally accounting for supratentorial brain volume.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!