The thermosensitive allelic mutations sm19-1 and sm19-2 of Paramecium tetraurelia cause defective basal body duplication: growth at the nonpermissive temperature yields smaller and smaller cells with fewer and fewer basal bodies. Complementation cloning of the SM19 gene identified a new tubulin, eta-tubulin, showing low homology with each of the other five tubulins, alpha to epsilon, characterized in P. tetraurelia. In order to analyze eta-tubulin functions, we used a genetic approach to identify interacting molecules. Among a series of extragenic suppressors of the sm19-1 mutation, the su3-1 mutation was characterized as an E288K substitution in the beta-PT2 gene coding for a beta-tubulin, while the mutation nocr1 conferring nocodazole resistance and localized in another beta-tubulin gene, beta-PT3, was shown to enhance the mutant phenotype. The interaction between eta-tubulin and microtubules, revealed by genetic data, is supported by two further types of evidence: first, the mutant phenotype is rescued by taxol, which stabilizes microtubules; second, molecular modeling suggests that eta-tubulin, like gamma- and delta-tubulins, might be a microtubule minus-end capping molecule. The likely function of eta-tubulin as part of a complex specifically involved in basal body biogenesis is discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC329518PMC
http://dx.doi.org/10.1128/EC.3.1.212-220.2004DOI Listing

Publication Analysis

Top Keywords

basal body
8
mutant phenotype
8
eta-tubulin
5
genetic evidence
4
evidence interaction
4
interaction eta-
4
eta- beta-tubulins
4
beta-tubulins thermosensitive
4
thermosensitive allelic
4
allelic mutations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!