It has been hypothesized that increasing atmospheric CO(2) concentration enhances accumulation of carbon in fine roots, thereby altering soil carbon dynamics and nutrient cycling. To evaluate possible changes to belowground pools of carbon and nitrogen in response to elevated CO(2), an early and a late successional species of pine (Pinus taeda L. and Pinus ponderosa Dougl. ex Laws, respectively) were grown from seed for 160 days in a 35 or 70 Pa CO(2) partial pressure at low or high temperature (30-year weekly mean and 30-year weekly mean + 5 degrees C) and a soil solution nitrogen concentration of 1 or 5 mM NH(4)NO(3) at the Duke University Phytotron. Seedlings were harvested at monthly intervals and growth parameters of the primary root, secondary root and tap root fractions evaluated. Total root biomass of P. ponderosa showed a positive CO(2) response (105% increase) (P = 0.0001) as a result of significant increases in all root fractions in the elevated CO(2) treatment, but all other main effects and interactions were insignificant. In P. taeda, there were significant interactions between CO(2) and temperature (P = 0.04) and CO(2) and nitrogen (P = 0.04) for total root biomass. An allometric analysis indicated that modulation of the secondary root fraction was the main response of the trees to altered environmental conditions. In P. ponderosa, there was an increase in the secondary root fraction relative to the primary and tap root fractions under conditions of low temperature. In P. taeda, there was a shift in carbon accumulation to the secondary roots relative to the primary roots under low temperature and low nitrogen. Neither species exhibited shifts in carbon accumulation in response to elevated CO(2). We conclude that both species have the potential to increase belowground biomass substantially in response to rising atmospheric CO(2) concentration, and this response is sensitive to temperature and nitrogen in P. taeda. Both species displayed small shifts in belowground carbon accumulation in response to altered temperature and nitrogen that may have substantial ecosystem consequences over time.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/16.7.635DOI Listing

Publication Analysis

Top Keywords

carbon accumulation
16
temperature nitrogen
12
elevated co2
12
secondary root
12
root fractions
12
root
10
co2
10
pinus taeda
8
taeda pinus
8
pinus ponderosa
8

Similar Publications

Aerosol particles released from grit chambers of nine urban wastewater treatment plants in typical regions: Fugitive characteristics, quantitative drivers, and generation process.

Water Res

January 2025

State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

The flow through the grit chamber is non-biochemically treated wastewater, which contains microorganisms mainly from the source of wastewater generation. There are limited reports on aerosol particles generated by grit chambers compared with those produced by biochemical treatment tanks. This study analyzed the fugitive characteristics of aerosol particles produced in grit chambers at nine wastewater treatment plants in three regions of China.

View Article and Find Full Text PDF

The partitioning of photosynthate among various forest carbon pools is a key process regulating long-term carbon sequestration, with allocation to aboveground woody biomass carbon (AGBC) in particular playing an outsized role in the global carbon cycle due to its slow residence time. However, directly estimating the fraction of gross primary productivity (GPP) that goes to AGBC has historically been difficult and time-consuming, leaving us with persistent uncertainties. We used an extensive dataset of tree-ring chronologies co-located at flux towers to assess the coupling between AGBC and GPP, calculate the fraction of fixed carbon that is allocated to AGBC, and understand the drivers of variability in this fraction.

View Article and Find Full Text PDF

Objectives: Many chemicals have been used for industrial purposes, and some of them are carcinogenic to humans. However, their molecular mechanisms have not been well understood. Reactive oxygen species are generated from industrial chemicals and contribute to carcinogenesis.

View Article and Find Full Text PDF

Shifts in fungal communities drive soil profile nutrient cycling during grassland restoration.

mBio

January 2025

State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi, China.

Soil microbial diversity and community life strategies are crucial for nutrient cycling during vegetation restoration. Although the changes in topsoil microbial communities during restoration have been extensively studied, the structure, life strategies, and function of microbial communities in the subsoil remain poorly understood, especially regarding their role in nutrient cycling during vegetation restoration. In this study, we conducted a comprehensive investigation of the changes in the soil microbial community, assembly process, life strategies, and nutrient cycling functional genes in soil profiles (0-100 cm) across a 36 year chronosequence (5, 15, 28, and 36 years) of fenced grassland and one grazing grassland on the Loess Plateau of China.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFASs) have been widely used in daily life but they cause certain impacts on the environment due to their unique carbon-fluorine chemical bonds that are difficult to degrade in the environment. Toxicological studies on PFASs and their alternatives have mainly focused on vertebrates, while terrestrial and aquatic invertebrates have been studied to a lesser extent. As invertebrates at the bottom of the food chain play a crucial role in the whole ecological chain, it is necessary to investigate the toxicity of PFASs to invertebrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!