Pectin methylesterase (PME) is the first enzyme acting on pectin, a major component of plant cell wall. PME action produces pectin with different structural and functional properties, having an important role in plant physiology. Regulation of plant PME activity is obtained by the differential expression of several isoforms in different tissues and developmental stages and by subtle modifications of cell wall local pH. Inhibitory activities from various plant sources have also been reported. A proteinaceous inhibitor of PME (PMEI) has been purified from kiwi fruit. The kiwi PMEI is active against plant PMEs, forming a 1:1 non-covalent complex. The polypeptide chain comprises 152 amino acid residues and contains five Cys residues, four of which are connected by disulfide bridges, first to second and third to fourth. The sequence shows significant similarity with the N-terminal pro-peptides of plant PME, and with plant invertase inhibitors. In particular, the four Cys residues involved in disulfide bridges are conserved. On the basis of amino acid sequence similarity and Cys residues conservation, a large protein family including PMEI, invertase inhibitors and related proteins of unknown function has been identified. The presence of at least two sequences in the Arabidopsis genome having high similarity with kiwi PMEI suggests the ubiquitous presence of this inhibitor. PMEI has an interest in food industry as inhibitor of endogenous PME, responsible for phase separation and cloud loss in fruit juice manufacturing. Affinity chromatography on resin-bound PMEI can also be used to concentrate and detect residual PME activity in fruit and vegetable products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbapap.2003.08.011 | DOI Listing |
Int J Pept Res Ther
January 2025
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States 46202.
Purpose: Heterozygous mutations in the insulin gene can give rise to a monogenic diabetes syndrome due to toxic misfolding of the variant proinsulin in the endoplasmic reticulum (ER) of pancreatic β-cells. Clinical mutations are widely distributed in the sequence (86 amino acids). Misfolding induces chronic ER stress and interferes in with wildtype biosynthesis and secretion.
View Article and Find Full Text PDFACS Cent Sci
January 2025
Centre for Inflammation Research, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
The cellular uptake routes of peptides and proteins are complex and diverse, often handicapping therapeutic success. Understanding their mechanisms of internalization requires chemical derivatization with approaches that are compatible with wash-free and real-time imaging. In this work, we developed a new late-stage labeling strategy for unprotected peptides and proteins, which retains their biological activity while enabling live-cell imaging of uptake and intracellular trafficking.
View Article and Find Full Text PDFACS Omega
January 2025
Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, P.R. China.
The main protease (M) is a pivotal target in the life cycle of feline coronavirus (FCoV), which causes a high mortality feline disease, feline infectious peritonitis (FIP). Virtual screening was performed against the feline coronavirus M to find active compounds with low toxicity from a library of natural products. Eighty-six compounds were selected by using the rank of docking score and binding pose analysis.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.
Botanical dietary supplements are widely used, but issues of authenticity, consistency, safety, and efficacy that complicate their poorly understood mechanism of action have prompted questions and concerns in the popular and scientific literature. Black cohosh ( L., syn.
View Article and Find Full Text PDFJ Phycol
January 2025
School of Life Sciences, Central China Normal University, Wuhan, People's Republic of China.
Phytoplankton plays a crucial role in the fate of pollutants in aquatic ecosystems by biotransformation and bioaccumulation. Aniline was listed in priority pollutants due to its toxicity and widespread distribution in the aquatic environment. This study focused on investigating the capacity and mechanism of eukaryotic alga Chlamydomonas reinhardtii in transforming aniline.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!