The temperature (T)-dependence of energy consumption of resting anaerobic frog gastrocnemii exposed to different, changing electrochemical gradients was assessed. To this aim, the rate of ATP resynthesis (delta approximately P/deltat) was determined by (31)P- and (1)H-MRS as the sum of the rates of PCr hydrolysis (delta[PCr]/deltat) and of anaerobic glycolysis (delta[La]/ deltat, based on a approximately P/La ratio of 1.5). The investigated T levels were 15, 20 and 25 degrees C, whereas initial extracellular pH (pHe) values were 7.9, 7.3 and 7.0, i.e. higher, equal or lower, respectively, than intracellular pH (pHi). The latter was changing with T according to the neutrality point (dpH/dT=-0.0165 pH units/ degrees C). Both rates of PCr hydrolysis and of lactate accumulation and that of their sum, expressed as delta approximately P/deltat, were highly T-dependent. By contrast, the pHe-dependence of the muscle energy balance was nil or extremely limited at 15 and 20 degrees C, respectively, but remarkable at 25 degrees C (with a depression of the ATP resynthesis rate up to 25% with a decrease of pHe from 7.9 to 7.0). The pHe-dependent reduction of metabolic rate was associated with a down-regulation of anaerobic glycolysis due to reduced activity of ion-transporters controlling acid-base balance and/or to a shift from Na(+)/H(+) to a more efficient Na(+)-dependent Cl(-)/HCO(3)(-) exchanger. Uncoupling of glycogenolysis from P-metabolite concentrations, both as function of T (>or=20 degrees C) and of pHe (
Download full-text PDF
Source
http://dx.doi.org/10.1016/j.bbabio.2003.11.007 DOI Listing Publication Analysis
Top Keywords
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!