The major histocompatibility complex (MHC) class I (MHC-I) antigen presentation system is responsible for the cell-surface presentation of self-proteins and intracellular viral proteins. This pathway is important in screening between self, and non-self or infected cells. In this pathway, proteins are partially degraded to peptides in the cytosol and targeted to the cell surface bound to an MHC-I receptor protein. At the cell surface, T cells bypass cells displaying self-peptides but destroy others displaying foreign antigens. Cells contain several isoforms of the proteasome, but it is thought that the immunoproteasome is the major form involved in generating peptides for the MHC-I pathway. How all intracellular proteins are targeted for MHC-I processing is unclear. Oxidative stress is experienced by all cells, and all proteins are exposed to oxidation. We propose that oxidative modification makes proteins susceptible to degradation by the immunoproteasome. This could be called the protein oxidation and immunoproteasome or 'PrOxI' hypothesis of MHC-I antigen processing. Protein oxidation may, thus, be a universal mechanism for peptide generation and presentation in the MHC-I pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2003.12.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!