Operation Everest II was designed to examine the physiological responses to gradual decompression simulating an ascent of Mt Everest (8,848 m) to an inspired PO2 of 43 mmHg. The principal studies conducted were cardiovascular, respiratory, muscular-skeletal and metabolic responses to exercise. Eight healthy males aged 21-31 years began the "ascent" and six successfully reached the "summit", where their resting arterial blood gases were PO2 = 30 mmHg and PCO2 = 11 mmHg, pH = 7.56. Their maximal oxygen uptake decreased from 3.98 +/- 0.2 L/min at sea level to 1.17 +/- 0.08 L/min at PIO2 43 mmHg. The principal factors responsible for oxygen transport from the atmosphere to tissues were (1) Alveolar ventilation--a four fold increase. (2) Diffusion from the alveolus to end capillary blood--unchanged. (3) Cardiac function (assessed by hemodynamics, echocardiography and electrocardiography)--normal--although maximum cardiac output and heart rate were reduced. (4) Oxygen extraction--maximal with PvO2 14.8 +/- 1 mmHg. With increasing altitude maximal blood and muscle lactate progressively declined although at any submaximal intensity blood and muscle lactate was higher at higher altitudes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-2007-1024580 | DOI Listing |
ACS Appl Bio Mater
January 2025
Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502 284, Telangana, India.
Despite advancements in chronic arthritis treatment, there remains a significant demand for advanced nanotechnologies capable of efficiently delivering a wide range of therapeutic agents to provide symptomatic relief and facilitate the healing of inflamed cartilage tissue. Considering the significant impact of hypoxia on the development and maintenance of chondral tissue, replicating its effects on stem cells could be a potential approach for the treatment of osteoarthritis (OA). Cobalt is a prominent hypoxia-inducing agent, owing to its ability to activate the hypoxia-inducible factor (HIF) pathway regardless of cellular oxygen levels.
View Article and Find Full Text PDFJ Intensive Med
January 2025
Department of Critical Care Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China.
Background: Extracorporeal membrane oxygenation (ECMO) has been proven to be a support method and technology for patients with cardiopulmonary failure. However, the transport of patients under ECMO support is challenging given the high-risk technical maneuvers and patient-care concerns involved. Herein, we examined the safety of ECMO during the transport of critically ill patients and its impact on mortality rates, to provide more secure and effective transport strategies in clinical practice.
View Article and Find Full Text PDFInnovation (Camb)
January 2025
International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
Heterogeneous catalysis at the metal surface generally involves the transport of molecules through the interfacial water layer to access the surface, which is a rate-determining step at the nanoscale. In this study, taking the oxygen reduction reaction on a metal electrode in aqueous solution as an example, using accurate molecular dynamic simulations, we propose a novel long-range regulation strategy in which midinfrared stimulation (MIRS) with a frequency of approximately 1,000 cm is applied to nonthermally induce the structural transition of interfacial water from an ordered to disordered state, facilitating the access of oxygen molecules to metal surfaces at room temperature and increasing the oxygen reduction activity 50-fold. Impressively, the theoretical prediction is confirmed by the experimental observation of a significant discharge voltage increase in zinc-air batteries under MIRS.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Microelectronics, Jiangsu University Zhenjiang Jiangsu 212013 China
Lead halide perovskite heterojunctions have been considered as important building blocks for fabricating high-performance photodetectors (PDs). However, the interfacial defects induced non-radiative recombination and interfacial energy-level misalignment induced ineffective carrier transport severely limit the performance of photodetection of resulting devices. Herein, interfacial engineering with a spin-coating procedure has been studied to improve the photodetection performance of CHNHPbI/SnO heterojunction PDs, which were fabricated by sputtering a SnO thin film on ITO glass followed by spin-coating a CHNHPbI thin film.
View Article and Find Full Text PDFSyst Rev
January 2025
Department of Health Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
Background: The clinical characteristics, therapy, and outcome of Fournier Gangrene (FG) in patients using sodium-glucose cotransporter-2 inhibitors (SGLT2i) were examined in this systematic review.
Methods: Without a publication year restriction, we searched PubMed, ScienceDirect, and Cochrane. Additionally, we manually searched bibliographies using the terms "Fournier's gangrene" and "SGLT2 inhibitors.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!