AI Article Synopsis

  • A mathematical model simulates the evolution of electrophoretic systems in weak acid and base solutions using nonstationary partial differential equations to express mass and charge conservation.
  • The model uses a high-resolution finite-difference algorithm for efficient predictions of concentration, pH, and conductivity fields.
  • Results indicate that the order of separation in techniques like capillary zone electrophoresis and isotachophoresis is significantly influenced by the pH distribution, aiding in the prediction and interpretation of experimental outcomes.

Article Abstract

Transient states in the evolution of electrophoretic systems comprising aqueous solutions of weak monovalent acids and bases are simulated. The mathematical model is based on the system of nonstationary partial differential equations, expressing the mass and charge conservation laws while assuming local chemical equilibrium. It was implemented using a high resolution finite-difference algorithm, which correctly predicted the behavior of the concentration, pH and conductivity fields at low computational expense. Both the regular and the irregular modes of separation in capillary zone electrophoresis and isotachophoresis are considered. It is shown that the results of separation, particularly zone order, strongly depend on pH distribution. Simulation data as well as simple analytical assessments may help to predict and correctly interpret the experimental results.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.11501301184DOI Listing

Publication Analysis

Top Keywords

transient states
8
capillary zone
8
zone electrophoresis
8
electrophoresis isotachophoresis
8
computer simulation
4
simulation transient
4
states capillary
4
isotachophoresis transient
4
states evolution
4
evolution electrophoretic
4

Similar Publications

Reactions of SleC, Its Structure and Inhibition in Mitigation of Spore Germination in .

J Am Chem Soc

January 2025

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.

Spore germination in is initiated by a cascade of activities of several proteins that culminates in the activation of SleC, a cell-wall-processing enzyme. We report herein the details of the enzymatic activities of SleC by the use of synthetic peptidoglycan fragments and of spore sacculi. The reactions include the formation of 1,6-anhydromuramate─a hallmark of lytic transglycosylase activity─as well as a muramate hydrolytic product, both of which proceed through the same transient oxocarbenium species.

View Article and Find Full Text PDF

Cryo-EM structure of AAV2 Rep68 bound to integration site AAVS1: insights into the mechanism of DNA melting.

Nucleic Acids Res

January 2025

Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States.

The Rep68 protein from Adeno-Associated Virus (AAV) is a multifunctional SF3 helicase that performs most of the DNA transactions necessary for the viral life cycle. During AAV DNA replication, Rep68 assembles at the origin of replication, catalyzing the DNA melting and nicking reactions during the hairpin rolling replication process to complete the second-strand synthesis of the AAV genome. We report the cryo-electron microscopy structures of Rep68 bound to the adeno-associated virus integration site 1 in different nucleotide-bound states.

View Article and Find Full Text PDF

Early events in G-quadruplex folding captured by time-resolved small-angle X-ray scattering.

Nucleic Acids Res

January 2025

Department of Medicine, UofL Health Brown Cancer Center, University of Louisville, Louisville KY, 505 S Hancock St, Louisville, KY 40202, United States.

Time-resolved small-angle X-ray experiments are reported here that capture and quantify a previously unknown rapid collapse of the unfolded oligonucleotide as an early step in the folding of hybrid 1 and hybrid 2 telomeric G-quadruplex structures. The rapid collapse, initiated by a pH jump, is characterized by an exponential decrease in the radius of gyration from 24.3 to 12.

View Article and Find Full Text PDF

Predictive Value of Left Atrial Strain for Thrombotic Events in Hypertrophic Cardiomyopathy without Atrial Fibrillation.

Radiol Cardiothorac Imaging

February 2025

From the Department of Cardiology (L.P., W.J., J.L., W.Q., Y.X., Y.K., Q.Z., Y.C.), Department of Geriatrics (K.W.), and Center of Rare Diseases (Y.C.), West China Hospital, Sichuan University, No. 37, Guo Xue Road, Chengdu, Sichuan 610041, China; and Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, Ohio (Y.H.).

Purpose To assess the predictive value of left atrial (LA) fast long-axis strain derived from cardiac MRI for thrombotic events (TEs) in individuals with hypertrophic cardiomyopathy (HCM). Materials and Methods This secondary analysis of an ongoing prospective trial (Chinese Clinical Trial Registry: ChiCTR1900024094) included consecutive participants with HCM without atrial fibrillation (AF) who underwent cardiac MRI from January 2012 to December 2020. The LA fast long-axis strain was obtained by semiautomatically tracking the distance between the atrioventricular junction and the midposterior LA wall.

View Article and Find Full Text PDF

Introduction: Interleukin-10 (IL-10) is a potent immunomodulatory cytokine widely explored as a therapeutic agent for diseases, including myocardial infarction (MI). High-dose IL-10 treatment may not achieve expected outcomes, raising the question of whether IL-10 has dose-dependency, or even uncharted side-effects from overdosing. We hypothesized that IL-10 has dose-dependent effects on macrophage (Mφ) phenotypic transition and cardiac remodeling after MI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!