The effect of the anti-hypertensive agent ketanserin on the cerebral blood flow (CBF) and the cerebrovascular CO2 reactivity was examined in 10 healthy volunteers. Ketanserin was administered as an intravenous bolus of 10 mg followed by an infusion of 6 mg/h. Before administration CBF was measured by single photon emission computerized tomography (SPECT) of inhaled 133Xenon. Then arterial CO2 tension was subsequently decreased by voluntary hyperventilation and increased by breathing an air/CO2 mixture. The relative changes in CBF induced by the changes in arterial CO2 tension were estimated by the cerebral arterio-venous oxygen content difference method. One hour following the start of ketanserin infusion the SPECT measurement and CO2 manipulations were repeated. The CO2 reactivity (expressed as the slope of the regression line of the linear relation between CBF and PaCO2), was unchanged, i.e. 3.2%/0.1 kPa before ketanserin and 4.1%/0.1 kPa during ketanserin, respectively. Using regression lines from a semi-logarithmic plot the CO2 reactivity was also unchanged 3.4%/0.1 kPa and 3.5%/0.1 kPa, respectively. Ketanserin did not change CBF. The cerebral oxygen metabolism (CMRO2) was decreased 19% one hour after the start of infusion of ketanserin. In conclusion administration of ketanserin in a clinically relevant dose to healthy volunteers does not change the regional CBF not the cerebrovascular CO2 reactivity, but a decrease in CMRO2 was observed. However further studies are needed to clarify whether ketanserin in fact has a depressing effect on CMRO2 or whether the different results are caused by methodological errors or stochastic variation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01541774DOI Listing

Publication Analysis

Top Keywords

co2 reactivity
20
cerebrovascular co2
12
healthy volunteers
12
kpa ketanserin
12
ketanserin
10
ketanserin cerebral
8
cerebral blood
8
blood flow
8
co2
8
cbf cerebrovascular
8

Similar Publications

The present study details the synthesis and characterization of a robust, monomeric Al-H aluminate supported by a tridentate -phenolate ligand, isolated as [][Li(THF)] and [][N(Bu)] salts, which were then exploited as CO hydroboration catalysts. As initial reactivity studies, it was observed that the nucleophilic Al-H anion in [][C] (C = countercation [Li(THF)] or [N(Bu)]) reacts fast with CO, to afford the corresponding Al-formate complexes [][C], which were isolated and structurally characterized. Such anions were then exploited as potential CO reduction catalysts.

View Article and Find Full Text PDF

This paper investigates the impact of varying humidity conditions on the carbonation depth in hardened cement paste using a 3-dimensional microscale kinetic Monte Carlo (kMC) approach. The kMC algorithm effectively simulates the carbonation process by capturing the interplay between CO diffusion and relative humidity at the microscale, providing insights into macro trends that align with historical models. The study reveals that the maximum carbonation depth is achieved at relative humidity levels between 55 and 65%, where the balance between water and CO diffusion is optimized.

View Article and Find Full Text PDF

One use of CO as a starting material in organic transformations is in the synthesis of cyclic carbonates and polycarbonates. Due to the low reactivity of CO, this transformation must be carried out in the presence of an efficient catalyst. Although several catalytic systems have been developed in the past decade, reducing the CO pressure at which the reaction is carried out remains one of the main challenges of the process.

View Article and Find Full Text PDF

Monitoring reactive nitrogen species (RNS) in complex biological media is essential for evaluating the health status of living organisms; however, biofouling on the sensor surface restricts its applications. To overcome this issue, we developed an antifouling electrochemical sensing platform using copper-platinum bimetallic nanoparticles/N-doped biomass porous carbon fibres (Cu-PtNPs/N-BCF) for directly detecting peroxynitrite anion (ONOO), a major type of RNS. Cyclic voltammetry measurements demonstrated that the Cu-PtNPs/N-BCF-2 nanocomposite, synthesised at a molar ratio of 1:1 between Co and Zn, exhibited exceptional electrocatalytic activity for ONOO oxidation.

View Article and Find Full Text PDF

Doping strategies have been recognized as effective approaches for developing cost-effective and durable catalysts with enhanced reactivity and selectivity in the electrochemical synthesis of value-added compounds directly from CO. However, the reaction mechanism and the specific roles of heteroatom doping, such as N doping, in advancing the CO reduction reaction are still controversial due to the lack of precise control of catalyst surface microenvironments. In this study, we investigated the effects of N doping on the performances for electrochemically converting CO to CO over Ni@NCNT/graphene hybrid structured catalysts (Ni@NCNT/Gr).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!