Lipopolysaccharides (LPS) can be used to induce experimental endotoxic shock, which is characterized by a significant decrease in mean arterial pressure (MAP) and a decreased vasoconstrictor response that have been attributed to excessive nitric oxide production. Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase), in addition to lowering serum cholesterol levels, exert many pleiotropic effects, including anti-inflammatory action. In the present study, we investigated the effect of simvastatin, an HMG-CoA reductase inhibitor, on the production of nitric oxide and the cardiovascular response to LPS. Male Wistar rats were pretreated with different doses of simvastatin (10, 20, 40, and 80 mg/kg, i.p.) or saline 20 min before i.v. injection of LPS (1.5 mg/kg) or saline (control). MAP was continuously recorded and nitrate plasma concentration was determined during the 6-h experimental session at 1-h intervals. The pressor response to phenylephrine (1 microg/kg) was evaluated before and 6 h after LPS administration. In the LPS-treated group, there was a time-dependent increase in nitrate plasma concentration (P<0.001), and this response was decreased in simvastatin pretreated rats (P<0.001). We also observed that LPS decreased the pressor response to phenylephrine (P<0.001), an effect that was reverted by simvastatin pretreatment (P<0.05). However, simvastatin did not modify the decrease of MAP induced by LPS. We concluded that simvastatin decreases nitrate plasma concentration in response to LPS and recovers vascular responsiveness during an experimental endotoxic shock. These data suggest the potential use of HMG-CoA reductase inhibitors as a coadjuvant in the treatment of septic shock.

Download full-text PDF

Source
http://dx.doi.org/10.1097/10.shk.0000115756.74059.ceDOI Listing

Publication Analysis

Top Keywords

nitric oxide
12
endotoxic shock
8
hmg-coa reductase
8
mg/kg saline
8
nitrate plasma
8
plasma concentration
8
simvastatin decreases
4
decreases nitric
4
oxide overproduction
4
overproduction reverts
4

Similar Publications

The emergence of targeted anti-tumor drugs has significantly prolonged the lifespan and improved the prognosis of cancer patients. Among these drugs, vascular endothelial growth factor (VEGF) inhibitors, particularly novel small molecule tyrosine kinase inhibitors (TKIs), are extensively employed as VEGF inhibitors; however, they are also associated with a higher incidence of complications, with hypertension being the most prevalent cardiovascular toxic side effect. Currently, it is widely accepted that TKIs-induced hypertension involves multiple mechanisms including dysregulation of the endothelin (ET) axis, reduced bioavailability of nitric oxide (NO), imbalance in NO-ROS equilibrium system, vascular rarefaction, and activation of epithelial sodium calcium channels; nevertheless, excessive activation of ET system appears to be predominantly responsible for this condition.

View Article and Find Full Text PDF

Protective effects of berbamine against arginase-1 deficiency-induced injury in human brain microvascular endothelial cells.

Front Pharmacol

January 2025

Department of Geriatric Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.

Endothelial cell dysfunction plays a crucial role in the early development of cerebral small vessel disease (CSVD). Arginase-1 (ARG1) is expressed in endothelial cells, and its deficiency may exacerbate cerebrovascular damage by increasing reactive oxygen species (ROS) production, thereby inducing endothelial cell apoptosis. Berbamine (BBM) has shown potential in neuroprotection and cardiovascular disease prevention.

View Article and Find Full Text PDF

Nitric oxide (NO) is a ubiquitous signaling molecule known to modulate various physiological processes, with specific implications in skeletal muscle and broader applications in exercise performance. This review focuses on the modulation of skeletal muscle function, mitochondrial adaptation and function, redox state by NO, and the effect of nitrate supplementation on exercise performance. In skeletal muscle function, NO is believed to increase the maximal shortening velocity and peak power output of muscle fibers.

View Article and Find Full Text PDF

Chloroform Extract from Fermented Regulates LPS-Induced Inflammation Response in RAW 264.7 Cells by Inhibiting iNOS and COX-2.

J Microbiol Biotechnol

December 2024

Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea.

Inflammatory is a crucial part of the immune system of body protect it from harmful invaders, such as bacteria, viruses, and other foreign substances. In this study, the effects of chloroform extract of fermented (CEFV) on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 macrophages were investigated.

View Article and Find Full Text PDF

Oxidative stress and inflammatory dysregulation play crucial roles in pathogenesis of acute lung injury (ALI), and their cyclic synergy drives excessive inflammatory responses and further exacerbates ALI. Therefore, new effective strategies to treat ALI are urgently needed. Herein, a novel synergistic selenium based chlorogenic acid nanoparticle was developed to disrupt the cyclic synergistic effect between oxidative stress and inflammatory response in ALI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!