Proc Natl Acad Sci U S A
Servicio de Inmunología, Hospital Universitario Virgen de la Arrixaca, 31020 Murcia, Spain.
Published: February 2004
The promyelocytic leukemia zinc finger (PLZF) gene, involved in rare cases of acute promyelocytic leukemia, encodes a Krüppel-type zinc finger transcription factor. It has been reported that PLZF affects myeloid cell growth, differentiation, and apoptosis. However, the function of PLZF in the lymphoid compartment, where PLZF is also expressed, remains largely unknown. To investigate a potential relationship between PLZF expression in lymphocytes and programmed cell death, an inducible model of stable clones of the lymphoid Jurkat cell line was created by using the tet-off system. Although induction of PLZF expression by itself did not produce changes in the basal levels of apoptosis, PLZF had a significant anti-apoptotic effect in Jurkat cells cultured in conditions of serum starvation, as measured by annexin V staining and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling. In addition, retarded loss of mitochondrial transmembrane potential was observed in the PLZF-expressing clones, suggesting that PLZF protects from cell death through a mitochondrial-dependent mechanism. To identify apoptosis-related targets of PLZF, a screen for differential expression identified BID, a proapoptotic member of the Bcl2 family, as significantly down-regulated by PLZF. Furthermore, a high-affinity PLZF-binding site element was identified upstream of the BID transcriptional start site, as assessed by electrophoretic mobility-shift assays. These results suggest that BID is a target of PLZF repression and a candidate gene to mediate the PLZF-induced resistance to apoptosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC357024 | PMC |
http://dx.doi.org/10.1073/pnas.0308358100 | DOI Listing |
J Oncol Pharm Pract
January 2025
Department of Pharmacy Practice, Massachusetts College of Pharmacy and Health Sciences School of Pharmacy, Boston, MA, USA.
Purpose: Sinusoidal obstructive syndrome (SOS)/veno-occlusive disease (VOD) is a serious complication in hematopoietic stem-cell transplant (HSCT) patients. Gemtuzumab-ozogamicin (GO) and InO are known to cause SOS/VOD in leukemic and transplant populations. Due to limited data on ursodiol prophylaxis in non-HSCT patients, we aimed to assess hepatotoxicity, SOS/VOD incidences, time to hepatotoxicity, and confirmed SOS/VOD in adults receiving GO or InO ± ursodiol.
View Article and Find Full Text PDFMedicine (Baltimore)
November 2024
Clinical laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China.
This study analyzes the laboratory characteristics and prognosis of patients between PML-RARα negative APL and PML-RARα positive APL and compares the differences in order to improve the understanding of this rare APL and guide clinical diagnosis and treatment. A total of 81 patients with newly diagnosed APL based on bone marrow cell morphology were included, with 14 in the PML-RARα gene negative group and 67 in the PML-RARα gene positive group. The sex, age, peripheral blood routine test, coagulation related indicators, bone marrow cell morphology, flow cytometric immunophenotype, abnormal chromosome expression and prognosis of the 2 groups were analyzed and compared.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Department of Biology, École Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France.
Acute Promyelocytic Leukaemia (APL) arises from an aberrant chromosomal translocation involving the Retinoic Acid Receptor Alpha (RARA) gene, predominantly with the Promyelocytic Leukaemia (PML) or Promyelocytic Leukaemia Zinc Finger (PLZF) genes. The resulting oncoproteins block the haematopoietic differentiation program promoting aberrant proliferative promyelocytes. Retinoic Acid (RA) therapy is successful in most of the PML::RARA patients, while PLZF::RARA patients frequently become resistant and relapse.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Acute myeloid leukemia (AML) featuring retinoic acid receptor-gamma (RARG) rearrangements exhibits morphological features resembling those of acute promyelocytic leukemia but is associated with drug resistance and poor clinical outcomes. However, the mechanisms underlying the role of RARG fusions in leukemogenesis remain elusive. Here, we show that RARG fusions disrupt myeloid differentiation and promote proliferation and self-renewal of hematopoietic stem and progenitor cells (HSPCs) by upregulating BCL2 and ATF3.
View Article and Find Full Text PDFNat Commun
January 2025
National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
Acute myeloid leukemia (AML) with retinoic acid receptor gamma (RARG) fusions, which exhibits clinical features resembling acute promyelocytic leukemia (APL), has been identified as a new subtype with poor clinical outcomes. The underlying mechanism of RARG-fusion leukemia remains poorly understood, and needs to be explored urgently to instruct developing effective therapeutic strategies. Here, using the most prevalent RARG fusion, CPSF6-RARG (CR), as a representative, we reveal that the CR fusion, enhances the expansion of myeloid progenitors, impairs their maturation and synergizes with RAS mutations to drive more aggressive myeloid malignancies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.