The TREX (transcription/export) complex couples transcription elongation to the nuclear export of mRNAs. In this article, we show that the poly(A)(+) RNA-binding proteins Gbp2 and Hrb1, which resemble the serine-arginine-rich (SR) family of splicing factors found in higher eukaryotes, are specifically associated with the yeast TREX complex. We also show that Gbp2 and Hrb1 interact with Ctk1, a kinase that phosphorylates the C-terminal domain of RNA polymerase II during transcription elongation. Consistent with these findings, Gbp2 and Hrb1 associate with actively transcribed genes throughout their entire lengths. By using an RNA immunoprecipitation assay, we show that Gbp2 and Hrb1 also are bound to transcripts that are derived from these genes. We conclude that recruitment of the SR-like proteins Gbp2 and Hrb1 to mRNA occurs cotranscriptionally by means of association with the TREX complex and/or Ctk1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC357017 | PMC |
http://dx.doi.org/10.1073/pnas.0308663100 | DOI Listing |
Int J Mol Sci
September 2024
Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, 37077 Göttingen, Germany.
Cell survival depends on precise gene expression, which is controlled sequentially. The guard proteins surveil mRNAs from their synthesis in the nucleus to their translation in the cytoplasm. Although the proteins within this group share many similarities, they play distinct roles in controlling nuclear mRNA maturation and cytoplasmic translation by supporting the degradation of faulty transcripts.
View Article and Find Full Text PDFRNA
December 2023
Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany
The conserved TREX complex has multiple functions in gene expression such as transcription elongation, 3' end processing, mRNP assembly and nuclear mRNA export as well as the maintenance of genomic stability. In , TREX is composed of the pentameric THO complex, the DEAD-box RNA helicase Sub2, the nuclear mRNA export adaptor Yra1, and the SR-like proteins Gbp2 and Hrb1. Here, we present the structural analysis of the endogenous TREX complex of purified from its native environment.
View Article and Find Full Text PDFJ Fungi (Basel)
October 2022
Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China.
Serine/arginine (SR) proteins are essential pre-mRNA splicing factors in eukaryotic organisms. Our previous studies have shownthat the unique SR-specific protein kinase Srk1 is important for RNA splicing and gene transcription in , and interacts with two SR proteins, FgSrp1 and FgSrp2. In this study, we have identified an SR-like protein called Sgh1 in , which is orthologous to budding yeast paralogous Gbp2 and Hrb1.
View Article and Find Full Text PDFGenetics
September 2022
Department of Biology, Millsaps College, Jackson, MS 39210, USA.
Aspergillus nidulans snxA, an ortholog of Saccharomyces cerevisiae Hrb1/Gbp2 messenger RNA shuttle proteins, is-in contrast to budding yeast-involved in cell cycle regulation, in which snxA1 and snxA2 mutations as well as a snxA deletion specifically suppress the heat sensitivity of mutations in regulators of the CDK1 mitotic induction pathway. snxA mutations are strongly cold sensitive, and at permissive temperature snxA mRNA and protein expression are strongly repressed. Initial attempts to identify the causative snxA mutations revealed no defects in the SNXA protein.
View Article and Find Full Text PDFInt J Mol Sci
October 2021
Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, 37077 Göttingen, Germany.
Pre-mRNA splicing is critical for cells, as defects in this process can lead to altered open reading frames and defective proteins, potentially causing neurodegenerative diseases and cancer. Introns are removed in the nucleus and splicing is documented by the addition of exon-junction-complexes (EJCs) at exon-exon boundaries. This "memory" of splicing events is important for the ribosome, which translates the RNAs in the cytoplasm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!