The pKa value of a substrate analogue 3-thiaoctanoyl-CoA at alphaC-H is known to drop from ca. 16 in the free state to 5-6 upon binding to medium-chain acyl-CoA dehydrogenase (MCAD). The molecular mechanism underlying this phenomenon was investigated by taking advantage of artificial FADs, i.e., 8-CN-, 7,8-Cl2-, 8-Cl-, 8-OCH3-, 8-NH2-, ribityl-2'-deoxy-8-CN-, and ribityl-2'-deoxy-8-Cl-FADs, reconstituted into MCAD. The stronger the electron-withdrawing ability of the substituent, the smaller the pKa value became [e.g., 7.4 (8-NH2-FAD) and 4.0 (8-CN-FAD)], suggesting that the flavin ring itself affects the pKa value of the ligand via a charge-transfer interaction with the ligand. The destruction of the hydrogen bond between the thioester C(1)=O and the ribityl-2'-OH of FAD raised the pKa by ca. 2.5 units. These results indicate that the interaction between the ligand and the flavin ring also serves to lower the pKa of the ligand, in addition to the hydrogen bonds at C(1)=O of the ligand.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jb/mvg209DOI Listing

Publication Analysis

Top Keywords

molecular mechanism
8
pka substrate
8
medium-chain acyl-coa
8
acyl-coa dehydrogenase
8
flavin ring
8
pka ligand
8
interaction ligand
8
pka
6
ligand
5
mechanism drop
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!