In experiments to study the impact of deficiency in CD4+ T cell help on the magnitude of CD8+ cytotoxic T cell response to pathogens, it was noted that in CD4 gene knockout mice, the CD8 population made significant responses to several nominally major histocompatibility complex (MHC) class II-restricted epitopes in addition to the expected responses to MHC class I-restricted epitopes. A similar response by CD8+ T cells to class II-restricted epitopes was not observed in wild-type mice, or in mice that had been acutely depleted of CD4+ T cells just before the immunization. Coincident with this unexpected response to class II-restricted epitopes, it was also observed that the CD8+ response to the class I-restricted epitopes was consistently lower in CD4-/- mice than in wild-type mice. Further experiments suggested that these two observations are linked and that the CD8 population in CD4-/- mice may contain a majority of T cells that were actually selected by recognition of MHC class II molecules in the thymus. These results have implications for understanding CD4 versus CD8 lineage commitment in the thymus, and for the practical use of CD4-/- mice as models of helper deficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2211827 | PMC |
http://dx.doi.org/10.1084/jem.20031961 | DOI Listing |
Biomaterials
January 2025
Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA; Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA. Electronic address:
Immune checkpoint inhibitors (ICIs) show limited success in treating pancreatic ductal adenocarcinoma (PDAC), largely due to immune evasion mechanisms, including downregulating expression of major histocompatibility complex class I (MHC-I). Our retrospective analysis demonstrated that smoking - a state of elevated CO exposure - is correlated with increased MHC I expression in pancreatic tumors. Here we tested our hypothesis that introducing exogenous CO augments the anti-cancer effects of immunotherapy.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Moores Cancer Center, University of California San Diego, San Diego, CA 92037, USA.
The discovery of tumor-derived neoantigens which elicit an immune response through major histocompatibility complex (MHC-I/II) binding has led to significant advancements in immunotherapy. While many neoantigens have been discovered through the identification of non-synonymous mutations, the rate of these is low in some cancers, including head and neck squamous cell carcinoma. Therefore, the identification of neoantigens through additional means, such as aberrant splicing, is necessary.
View Article and Find Full Text PDFPLoS One
January 2025
Foot and Mouth Disease Department, National Veterinary Research Institute, Vom, Plateau State, Nigeria.
The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
Background: Microsatellite instability-high (MSI-H) metastatic colorectal cancer (CRC) patients are the dominant population in immune checkpoint blockade treatments, while more than half of them could not benefit from single-agent immunotherapy. We tried to identify the biomarker of MSI-H CRC and explore its role and mechanism in anti-PD-1 treatments. Tumor-specific MHC-II was linked to a better response to anti-PD-1 in MSI-H CRC and CD74 promoted assembly and transport of HLA-DR dimers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104.
Class I major histocompatibility complex (MHC-I) proteins play a pivotal role in adaptive immunity by displaying epitopic peptides to CD8+ T cells. The chaperones tapasin and TAPBPR promote the selection of immunogenic antigens from a large pool of intracellular peptides. Interactions of chaperoned MHC-I molecules with incoming peptides are transient in nature, and as a result, the precise antigen proofreading mechanism remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!