Hypertension is one of the major risk factors of stroke and vascular dementia (VaD). We used stroke prone spontaneous hypertensive rats (SPSHRs) as a model for neuronal degeneration frequently occurring in humans with vascular disease. Recently, high b value q-space diffusion-weighted imaging (DWI) was shown to be very sensitive to the pathophysiological state of the white matter. We studied the spinal cords of SPSHR rats ex vivo after the appearance of motor impairments using diffusion anisotropy and q-space diffusion imaging (measured at a high b value of up to 1 x 10(5) s/mm(2)). The diffusion anisotropy images computed from low b value data set (b(max) approximately 2500 s/mm(2)) showed a small but statistically significant decrease (approximately 12%, P < 0.05) in the diffusion anisotropy in the spinal cords of the SPSHR group as compared to control rats. However, more significant changes were found in the high b value q-space diffusion images. The q-space displacement values in the white matter of the SPSHR group were found to be higher by more than 70% (P < 0.002) than that of the control group. These observations concurred with electron microscopy (EM) that showed significant demyelination in the spinal cords of the SPSHR group. These results seem to indicate that high b value q-space DWI might be a sensitive method for following demyelination and axonal loss associated with vascular insults.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0014-4886(03)00274-7DOI Listing

Publication Analysis

Top Keywords

q-space diffusion
12
high q-space
12
spinal cords
12
cords spshr
12
diffusion anisotropy
12
spshr group
12
neuronal degeneration
8
dwi sensitive
8
white matter
8
q-space
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!