A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structural basis of the unusual stability and substrate specificity of ervatamin C, a plant cysteine protease from Ervatamia coronaria. | LitMetric

Ervatamin C is an unusually stable cysteine protease from the medicinal plant Ervatamia coronaria belonging to the papain family. Though it cleaves denatured natural proteins with high specific activity, its activity toward some small synthetic substrates is found to be insignificant. The three-dimensional structure and amino acid sequence of the protein have been determined from X-ray diffraction data at 1.9 A (R = 17.7% and R(free) = 19.0%). The overall structure of ervatamin C is similar to those of other homologous cysteine proteases of the family, folding into two distinct left and right domains separated by an active site cleft. However, substitution of a few amino acid residues, which are conserved in the other members of the family, has been observed in both the domains and also at the region of the interdomain cleft. Consequently, the number of intra- and interdomain hydrogen-bonding interactions is enhanced in the structure of ervatamin C. Moreover, a unique disulfide bond has been identified in the right domain of the structure, in addition to the three conserved disulfide bridges present in the papain family. All these factors contribute to an increase in the stability of ervatamin C. In this enzyme, the nature of the S2 subsite, which is the primary determinant of specificity of these proteases, is similar to that of papain, but at the S3 subsite, Ala67 replaces an aromatic residue, and has the effect of eliminating sufficient hydrophobic interactions required for S3-P3 stabilization. This provides the possible explanation for the lower activity of ervatamin C toward the small substrate/inhibitor. This substitution, however, does not affect the binding of denatured natural protein substrates to the enzyme significantly, as there exist a number of additional interactions at the enzyme-substrate interface outside the active site cleft.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi0357659DOI Listing

Publication Analysis

Top Keywords

cysteine protease
8
ervatamia coronaria
8
papain family
8
denatured natural
8
amino acid
8
structure ervatamin
8
active site
8
site cleft
8
ervatamin
6
structural basis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!