Cytomegalovirus infection modulates cellular immunity in an experimental model for autoimmune diabetes.

Clin Dev Immunol

Faculty of Medical Sciences, Department of Cell Biology, Immunology Section, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.

Published: February 2005

Background: Viral infections are thought to play a role in the development of autoimmune diseases like type 1 diabetes. In this study we investigated the effect of Rat Cytomegalovirus (RCMV) infection on cellular immunity in a well-defined animal model for diabetes, the Biobreeding (BB) rat.

Methods: Diabetes prone (DP)- and Diabetes resistant (DR)-BB rats were infected with 2 x 10(6) plaque forming units (pfu) RCMV. Diabetes development was monitored by frequent blood-glucose analysis. Effects of RCMV on CD4+, CD8+ and Vbeta-TCR+ T-cell subsets were measured in vivo, and in vitro after restimulation with RCMV-infected fibroblasts. Proliferative capacity was determined by 3H-Thymidine incorporation.

Results: RCMV-infection resulted in a significant acceleration of diabetes onset in DP-BB rats (p = 0.003). Percentages CD4+ and CD8+ T-cells were not affected in vivo. In vitro, RCMV-restimulation resulted in a decreased CD4+/CD8+ blastoid T-cell ratio compared to ConA (p = 0.00028). Furthermore, RCMV-restimulation resulted in a strong RCMV-specific proliferation, which comprises about 50% of the response triggered by ConA. Vbeta-TCR percentages did not change upon RCMV-infection or RCMV-restimulation.

Interpretation: RCMV-restimulation of splenic T-cells in vitro resulted in a strong RCMV-specific proliferation, probably also including autoreactive T-cells. In vivo, this polyclonal response might be involved in the observed accelerated diabetes development in DP-BB rats upon RCMV-infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2485415PMC
http://dx.doi.org/10.1080/10446670310001626490DOI Listing

Publication Analysis

Top Keywords

cellular immunity
8
diabetes
8
diabetes development
8
cd4+ cd8+
8
vivo vitro
8
dp-bb rats
8
t-cells vivo
8
strong rcmv-specific
8
rcmv-specific proliferation
8
cytomegalovirus infection
4

Similar Publications

Since the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the need for an effective vaccine has appeared crucial for stimulating immune system responses to produce humoral/cellular immunity and activate immunological memory. It has been demonstrated that SARS-CoV-2 variants escape neutralizing immunity elicited by previous infection and/or vaccination, leading to new infection waves and cases of reinfection. The study aims to gain into cases of reinfections, particularly infections and/or vaccination-induced protection.

View Article and Find Full Text PDF

Adenosine-to-inosine (A-to-I) editing, catalyzed by adenosine deaminases acting on RNA (ADARs), is a prevalent post-transcriptional modification that is vital for numerous biological functions. Given that this modification impacts global gene expression, RNA localization, and innate cellular immunity, dysregulation of A-to-I editing has unsurprisingly been linked to a variety of cancers and other diseases. However, our current understanding of the underpinning mechanisms that connect dysregulated A-to-I editing and disease processes remains limited.

View Article and Find Full Text PDF

Structural analysis of human ADAR2-RNA complexes by X-ray crystallography.

Methods Enzymol

January 2025

Department of Chemistry, University of California, Davis, CA, United States; Department of Molecular and Cellular Biology, University of California, Davis, CA, United States. Electronic address:

Adenosine deaminases acting on RNAs (ADARs) are a class of RNA editing enzymes found in metazoa that catalyze the hydrolytic deamination of adenosine to inosine in duplexed RNA. Inosine is a nucleotide that can base pair with cytidine, therefore, inosine is interpreted by cellular processes as guanosine. ADARs are functionally important in RNA recoding events, RNA structure modulation, innate immunity, and can be harnessed for therapeutically-driven base editing to treat genetic disorders.

View Article and Find Full Text PDF

How short-term change in temperature or salinity affect cellular immune parameters of three-spined stickleback, Gasterosteus aculeatus?

Mar Environ Res

January 2025

Institut national de l'environnement industriel et des risques, Université de Reims Champagne-Ardenne, Université Le Havre Normandie, Normandie Univ, UMR-I 02 SEBIO, 60550, Verneuil-en-Halatte, France.

Reference values for the non-specific immune response of stickleback have been developed to better understand the natural variability of the immunomarkers and to increase their relevance for the detection of environmental perturbations. However, under field conditions, temperature and salinity can vary from station to station and their influence on the reference ranges of the immunomarkers should therefore be quantified. To this end, adult sticklebacks were exposed either to different temperatures (from 12 to 18 °C) or to different salinities (from 0 to 30 g/L) for 21 days after 10 days of acclimatization.

View Article and Find Full Text PDF

Background: Antiretroviral therapy (ART) restores cellular immunity, significantly reducing AIDS-related mortality and morbidity thus improving the quality of life among People living with HIV (PLHIV). Studies done in several countries show a decline in AIDS defining cancers (ADCs) with the introduction of ART however the increased longevity has led to the increase of Non-AIDS defining cancers (NADCs). The study was aimed at studying the changing spectrum and trends of cancer among Human Immunodeficiency Virus (HIV) patients in southwestern Uganda.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!