Results of previous research on the effects of noncontingent reinforcement (NCR) have been inconsistent when magnitude of reinforcement was manipulated. We attempted to clarify the influence of NCR magnitude by including additional controls. In Study 1, we examined the effects of reinforcer consumption time by comparing the same magnitude of NCR when session time was and was not corrected to account for reinforcer consumption. Lower response rates were observed when session time was not corrected, indicating that reinforcer consumption can suppress response rates. In Study 2, we first selected varying reinforcer magnitudes (small, medium, and large) on the basis of corrected response rates observed during a contingent reinforcement condition and then compared the effects of these magnitudes during NCR. One participant exhibited lower response rates when large-magnitude reinforcers were delivered; the other ceased responding altogether even when small-magnitude reinforcers were delivered. We also compared the effects of the same NCR magnitude (medium) during 10-min and 30-min sessions. Lower response rates were observed during 30-min sessions, indicating that the number of reinforcers consumed across a session can have the same effect as the number consumed per reinforcer delivery. These findings indicate that, even when response rate is corrected to account for reinforcer consumption, larger magnitudes of NCR (defined on either a per-delivery or per-session basis) result in lower response rates than do smaller magnitudes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1284466 | PMC |
http://dx.doi.org/10.1901/jaba.2003.36-525 | DOI Listing |
J Clin Exp Hepatol
December 2024
Stanford University, Palo Alto, CA, United States.
Background: Patients with cirrhosis are susceptible to infections due to abnormalities in humoral and cell-mediated immunity. Fungal infections are associated with delayed diagnosis and high mortality rates, emphasizing the importance of performing fungal cultures and maintaining elevated levels of suspicion in this patient population.
Methods: This retrospective cohort study analyzes cirrhotic patients readmitted with bacterial and fungal infections and investigates outcomes, including in-hospital mortality and hospital resource utilization.
Front Immunol
January 2025
Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
Background: Leukocytes play an important role in inflammatory response after a traumatic brain injury (TBI). We designed this study to identify TBI phenotypes by clustering blood levels of various leukocytes.
Methods: TBI patients from the Medical Information Mart for Intensive Care-III (MIMIC-III) database were included.
BMJ Neurol Open
January 2025
Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan.
Objective: This study investigated the effects of early treatment and pathophysiology on eosinophilic granulomatosis with polyangiitis neuropathy (EGPA-N).
Methods: Twenty-six consecutive patients with EGPA-N were diagnosed and treated within a day of admission and underwent clinical analysis. Peripheral nerve recovery rates were evaluated after early treatment by identifying the damaged peripheral nerve through detailed neurological findings.
Orthop J Sports Med
January 2025
Comprehensive Sports Medicine Center (CSMC), Chang Gung Memorial Hospital, Taoyuan, Taiwan.
Background: The importance of monitoring both physical and mental health in athletes across different levels of sport is increasingly acknowledged due to potential injury risks. However, for the Chinese-speaking population, there has not yet been an appropriate assessment tool available.
Purpose: To translate, culturally adapt, and assess the validity and reliability of the Chinese versions of the updated Oslo Sports Trauma Research Center Overuse Injury Questionnaire (OSTRC-O2) and the Health Problems Questionnaire (OSTRC-H2) among Taiwanese collegiate athletes.
Regen Biomater
December 2024
Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
Injury caused by excess reactive oxygen species (ROS) may lead to susceptibility to bacterial infection and sustained inflammatory response, which are the major factors impeding diabetic wound healing. By utilizing optimal anti-inflammatory, antioxidant and antibacterial biomaterials for multifunctional wound dressings is critical in clinical applications. In this study, a novel electrospun PLGA/MoS@Pd nanofiber membrane was synthesized by encapsulating antioxidant and near-infrared (NIR) responsive MOS@Pd nanozymes in PLGA nanofibers to form a multifunctional dressing for diabetic wound repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!