Interleukin-10 (IL-10), originally identified as an inhibitor of pro-inflammatory cytokine production, exerts multiple immunomodulatory functions. Its ability to inhibit a Th1 response has been used in clinical trials for the treatment of inflammatory diseases including psoriasis. However, little is known about the molecular mechanisms of IL-10 functions. We aimed at identifying possible mediators of in vitro IL-10 treatment in monocytes by gene chip technology using Hu95a Affymetrix mRNA arrays with 12,000 genes. To prove relevance of the identified genes for the clinical situation we compared these in vitro results with genes being regulated by IL-10 in peripheral blood mononuclear cells from psoriatic patients undergoing IL-10 therapy. A high proportion of the 1,600 genes up-regulated and 1,300 genes down-regulated in vitro was found to be similarly regulated in vivo. Some genes, which were previously unknown to be regulated by IL-10, can be assigned to known IL-10 functions like e.g. the increase of pathogen clearance. Other new potentially immunomodulating genes have been identified to be regulated by IL-10, but their impact needs to be experimentally evaluated. We could confirm a recently reported up-regulation of heme oxygenase-1 (HO-1). However, we demonstrate that the anti-inflammatory mechanisms of IL-10 remain functional even when HO-1 is irreversibly inhibited.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.200324323DOI Listing

Publication Analysis

Top Keywords

regulated il-10
12
il-10
10
genes
8
peripheral blood
8
blood mononuclear
8
mononuclear cells
8
cells psoriatic
8
psoriatic patients
8
il-10 therapy
8
mechanisms il-10
8

Similar Publications

The cytokine interleukin-10 (IL-10) limits the immune response and promotes resolution of acute inflammation. Because of its immunosuppressive effects, IL-10 up-regulation is a common feature of tumor progression and metastasis. Recently, IL-10 regulation has been shown to depend on mitochondria and redox-sensitive signals.

View Article and Find Full Text PDF

lncRNA SNHG6 Knockdown Promotes Microglial M2 Polarization and Alleviates Spinal Cord Injury via Regulating the miR-182-5p/NEUROD4 Axis.

Appl Biochem Biotechnol

January 2025

Department of Neurosurgery, General Medical 300 Hospital, No. 420 Huanghe Road, Guiyang City, 550006, Guizhou Province, China.

Spinal cord injury (SCI) is one of the devastating neurological disorders that leads to a loss of motor and sensory functions. Long non-coding RNA small nucleolar RNA host gene 6 (lncRNA SNHG6) plays a crucial role in inflammatory regulation across various diseases. This study investigates the role of SNHG6 in SCI development and its underlying regulatory mechanisms.

View Article and Find Full Text PDF

Sea buckthorn is a model of medicine and food homology, but the chemical composition and mechanism of anti-inflammatory effects are limited. In this study, the key components and mechanisms of the anti-inflammatory effects of sea buckthorn were identified based on UPLC-Q-TOF-MS, network pharmacology, molecular docking, molecular dynamics and RAW264.7 cells.

View Article and Find Full Text PDF

Objective: Multi-organ failure frequently complicates sepsis, with lungs being the primary target. T helper (Th) cell activation and phenotypic imbalance among them contribute significantly to sepsis-associated lung injury. Additionally, the complement system could regulate the polarized phenotype of T lymphocytes.

View Article and Find Full Text PDF

Green nail (GN) is typically caused by and commonly occurs in patients with nail damage, nail psoriasis, or frequent exposure to moist environments. Deucravacitinib is an oral tyrosine kinase 2 (Tyk2) inhibitor effective for psoriasis treatment. Herein, we report a case of GN in a 72-year-old man following four months of treatment with deucravacitinib.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!