As "exploiters" of plant-pollinator mutualisms, nectar-robbers remove rewards (nectar) without providing pollination services. Though one might expect nectar-robbing to be costly to plants, it may instead benefit plants by indirectly increasing pollen dispersal. I investigated the direct effects of nectar-robbing bees ( Xylocopa californica) on floral rewards and behaviors of pollinators visiting desert willow ( Chilopsis linearis) and indirect effects of robbing on the reproductive success of the plant. Nectar-robbers reduced nectar; while unrobbed and robbed flowers were equally likely to contain nectar, nectar volumes were smaller in robbed flowers with nectar. Apis mellifera (honeybees), ineffective pollinators in terms of pollen deposition, avoided robbed flowers. In contrast, Bombus sonorus (bumblebees), effective pollinators, did not avoid robbed flowers. While bumblebees tended to spend less time in robbed flowers, the time that they spent in flowers was not correlated with pollen deposition. Using powder mimicking pollen, I found that on some days, powder was dispersed farther or to more flowers from robbed flowers, indicating that robbing may sometimes benefit plants by increasing male reproductive success. Powder movement suggested that the effect of robbing on male reproductive success ranged from costly to beneficial. The outcome for flowers that were marked early each morning was a function of prevalence of robbing and abundances of effective pollinators, but not a function of spatial variability among trees in prevalence of robbing or the abundance of ineffective honeybees. Unlike powder dispersal, female reproductive success, measured by fruit set and the number of pollen tubes growing in styles, was not affected by robbing. Thus, robbers did not reduce plants' female reproductive success either directly by damaging flowers or indirectly by reducing pollen deposition by pollinators. Overall, this study indicates that nectar-robbers were not often costly to plants, and sometimes even benefited plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00442-004-1504-8 | DOI Listing |
Plants (Basel)
September 2024
Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA.
PhytoKeys
September 2024
Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa University of KwaZulu-Natal Pietermaritzburg South Africa.
PLoS One
April 2024
Department of Botany & Forestry, Vidyasagar University, Midnapore, India.
Nectar robbing is common in angiosperms, especially in long tubular flowers or flowers with spurs that keep nectar out of reach of visitors. However, the robbing behaviour of bees is less understood. Here, we studied the sesame visitors, their robbing behaviour, and the impacts of robbing on plant reproductive fitness.
View Article and Find Full Text PDFJ Plant Res
July 2024
College of Life Sciences, Northwest Normal University, Lanzhou, 730070, Gansu, China.
The intervention of nectar robbers in plant pollination systems will cause some pollinators to modify their foraging behavior to act as secondary robbers, consequently adopting a mixed foraging strategy. The influence of nectar robbing on pollinator behavior may be affected by spatio-temporal difference of robbing intensity, and consequently, may have different effects on the pollination of host plants. However, whether and how the nectar robbing might influence pollinators under different robbing intensity still needs further investigation.
View Article and Find Full Text PDFAbstractDifferences among hummingbird species in bill length and shape have rightly been viewed as adaptive in relation to the morphology of the flowers they visit for nectar. In this study we examine functional variation in a behaviorally related but neglected feature: hummingbird feet. We gathered records of hummingbirds clinging by their feet to feed legitimately as pollinators or illegitimately as nectar robbers-"unorthodox" feeding behaviors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!